MODELLAZIONE ENERGETICA DINAMICA ASHRAE 90.1, PER LEED E DECRETO REQUISITI MINIMI 26/06/2015: STRADE E RISULTATI CONVERGENTI?

Il protocollo di sostenibilità ambientale LEED, prevede la modellazione energetica dinamica secondo ASHRAE 90.1 appendice G, che chiede il confronto dell’edificio reale con un edificio di riferimento.

Con il DM 26/06/2015 la normativa Italiana ha introdotto una metodologia analoga, pur senza passare attraverso un modello dinamico, prevedendo di confrontare le prestazioni dell’edificio di progetto con un edificio di riferimento.

In questo lavoro gli autori presentano lo studio eseguito su un edificio multipiano, a destinazione alberghiera, da sottoporre a ristrutturazione importante di primo livello, che è stato analizzato con entrambe le metodologie: ASHRAE 90.1 e DM requisiti minimi, evidenziandone analogie e differenze.

Al fine di indagare come si raccordano tra loro le due metodologie e per capire quanto differiscono tra loro i rispettivi requisiti minimi, è stato poi esaminato l’edificio di riferimento DM 26/06/2015, considerandolo come “Proposed Building” ovvero edificio di progetto secondo ASHRAE 90.1 scoprendo, per lo specifico edificio, come si posiziona l’asticella di uno standard rispetto l’altro.

ENERGY MODELING for LEED, ACCORDING TO ASHRAE 90.1, AND ITALIAN LAW DM 26.06.2015: ARE PATHS AND RESULTS CONVERGENT?

The LEED sustainability protocol, provides energy modeling according to ASHRAE 90.1 Appendix G, which asks the real building comparison with a reference building.

With the DM 06/26/2015 the Italian legislation has introduced a similar methodology, without going through a dynamic model, expecting to compare the performance of the building project with a reference building.

In this paper the authors present the study performed on a multi-storey building for hotel use, to be subjected to major renovation of the first level, which was analyzed with both methods: ASHRAE 90.1 and DM 06/26/2015, highlighting similarities and differences.

In order to investigate how the two are connected to each other and to understand what methods differ in their minimum requirements, it was then examined the reference building DM 06/26/2015, considering it as "Proposed Building" ie design building according to ASHRAE 90.1 discovering, for the specific building as you place the bar of a standard than the other.
L’ESPERIENZA ECOEFFICIENTE DELL’OSPEDALE "VERSILIA" - TOSCANA

Il caso di studio è quello di un Ospedale Generale con circa 400 posti letto ultimato nel 2002, ma oggetto di un ulteriore intervento di efficientamento energetico nel 2014. L'Ospedale “Versilia”, presidio sanitario pubblico della Regione Toscana già nella fase della sua realizzazione ha inserito una serie di predisposizioni per l'efficienza energetica strutturale ed impiantistica: L'inserimento ambientale: con riferimento all'orientamento e alla schermatura delle alberature L'efficienza energetica strutturale: con attenzione all'isolamento dell'involucro edilizio L'equilibrata strategia impiantistica: con caldaie a condensazione, cogeneratore ed assorbitore La regolazione impiantistica: il BMS per il controllo e la conduzione/manutenzione Le fonti energetiche rinnovabili. Attraverso l'utilizzo e la gestione del cogeneratore a motore endotermico di 1Mwe è stato possibile produrre direttamente circa il 75% dell'energia elettrica necessaria e attraverso un evoluto sistema B.M.S. con circa 12.000 punti di analisi e regolazione dell'impiantistica elett. e mecc. è stato possibile raggiungere l'obiettivo della consistente riduzione dei consumi energetici: dai 4.131 TEP del 2003 ai 2.511 TEP del 2015 (-39.2%).

Il risultato è stato ottenuto anche attraverso l'installazione nel 2010 di un impianto di produzione fotovoltaica di 195 Kwe e l'installazione di un secondo cogeneratore a microturbine di 600 Kwe nel 2014, portando l'ospedale ad essere un edificio a "prelievo elettrico zero".

THE EXPERIENCE OF HOSPITAL ECO-EFFICIENT "VERSILIA" - TUSCANY

The case study is that of a general hospital with about 400 beds completed in 2002, but subject to further implementing energy efficiency measures in 2014. The Hospital "Versilia", the public health center of the Region of Tuscany at the stage of its implementation has added a series of preparations for the structural energy efficiency and plant: The environmental integration: with reference to guidance and shielding of trees The structural energy efficiency: with attention to the insulation of the building envelope The balanced strategy plant: with condensing boilers, CHP and absorber The plant adjustment: the BMS for the control and the driving / maintenance

Renewable energy sources Through the use and management of the internal combustion engine cogenerator 1MWe it was possible to directly produce about 75% of the electricity required and through an advanced system B.M.S. with approximately 12,000 points of analysis and regulation plant elec. and mech. it was possible to achieve the goal of consistent reduction of energy consumption: from 4,131 in 2003 to 2,511 TEP TEP of 2015 (-39.2%). The result was obtained even through the installation in 2010 of a photovoltaic plant of production of 195 Kwe and the installation of a second cogenerators microturbines of 600 Kwe in 2014, bringing the hospital to be a building in "electric zero levy".
QUALITÀ EDILIZIA E OTTIMIZZAZIONE ENERGETICA PER UNA MIGLIORE SOSTENIBILITÀ E QUALITÀ DI VITA – DALLA PROGETTAZIONE AL MONITORAGGIO DI UNA NUOVA RSA

Le moderne Residenze Sanitarie Assistenziali costituiscono gli ambienti che più si avvicinano ad una struttura Sanitaria: offrono a soggetti non totalmente autosufficienti, un medio livello di assistenza medica, infermieristica e riabilitativa, accompagnata da un alto livello di tutela assistenziale ed alberghiera: questo richiede un corretto controllo delle condizioni termoigrometriche invernali ed estive, della qualità illuminotecnica ed acustica.

Inoltre, i tassi di rinnovo dell’aria e gli elevati fabbisogni di acqua calda sanitaria, incidono significativamente sull’impronta energetica del fabbricato.

Questi elementi sono stati ampiamente affrontati nella RSA realizzata a Noale (VE) dalla Cazzaro Costruzioni srl. Le soluzioni edilizie ed impiantistiche adottate sono scaturite dalla collaborazione tra investitore, progettisti ed esecutori, nel rispetto degli obiettivi di investimento, concretizzandosi in sistemi di isolamento e chiusure trasparenti ad alte prestazioni, apparati di produzione energetica con fonte rinnovabile, sistemi di distribuzione ad elevata efficienza e recupero, terminali di climatizzazione peculiari.

L’edificio è stato seguito in fase di costruzione ed è stato sottoposto a monitoraggio dei parametri microclimatici ed energetici, individuando le aree di maggiore criticità e le strategie di ottimizzazione.

Vengono presentati i risultati di tre anni di esercizio, analizzando i costi di gestione, i monitoraggi ambientali e i flussi energetici.

QUALITY CONSTRUCTION AND OPTIMIZATION OF ENERGY AND SUSTAINABILITY FOR BETTER QUALITY OF LIFE - DESIGN COMMISSIONING AD MONITORING OF A NEW ELDERLY RESIDENCE

The modern nursing homes are close up to a Health structure: they offer to non-totally self-sufficient, an average level of medical care, nursing and rehabilitation, accompanied by a high level of care and hospitality: this requires proper inspection temperature and humidity conditions, lighting and sound quality. Furthermore, the air renewal rates and the high requirements of sanitary hot water, significantly affect the building energy footprint.

These elements have been widely covered in the RSA realized in Noale (VE) from Cazzaro Construction Ltd. The building and plant engineering solutions resulted from the collaboration between investors, designers and performers, in respect of the investment objectives. Have been employed high-performance insulation systems and transparent enclosures, energy production equipment with renewable sources, high efficiency distribution systems with energy recovery and peculiar climate control terminals.

The building has been followed under construction; microclimate and energy parameters has been monitored, identifying the most critical areas and optimization strategies.

We present the results of three years of service, analyzing the operating costs, environmental monitoring and energy flows.
POZZO VINDEX

Il pozzo vindex è una variante del classico pozzo canadese ma è molto più facile da realizzare, più economica ed efficiente.
Il pozzo vindex è un sistema geotermico passivo che si basa sullo scambio termico tra l'aria ed il terreno che ad una certa profondità mantiene una temperatura quasi costante tutto l'anno.
Il principio di funzionamento è molto semplice. L'aria esterna è aspirata da un ventilatore centrifugo e convogliata all'interno di un tubo interrato verticalmente collegato ad una serpentina in rame a contatto diretto col terreno a 7 m di profondità. Dopo aver attraversato la serpentina, l'aria risale attraverso un secondo tubo isolato per immettersi all'interno dell'ambiente da climatizzare. Nel 2015 abbiamo realizzato a Celenza Sul Trigno (CH) il primo pozzo vindex per rinfrescare/riscaldare una sala a forma di cupola catenaria di 102 m² di superficie e di 314 m³ di volume. La temperatura del terreno a 7 m di profondità è di circa 15 °C tutto l'anno. D'estate l'aria calda che attraversa il pozzo vindex è raffreddata, mentre quella fredda invernale è riscaldata. Il pozzo vindex a Celenza Sul Trigno è attualmente in funzione ed i risultati sono molto soddisfacenti, sia in termini economici che ambientali.

VINDEX WELL

The vindex well is a variant of the classic Canadian well but it is much easier to make, cheaper and more efficient.
The vindex well is a passive geothermal system that is based on heat exchange between the air and the soil to a certain depth that maintains an almost constant temperature throughout the year.
The principle of operation is very simple. The outside air is sucked by a centrifugal fan and conveyed inside of a buried pipe connected to a copper coil which is in direct contact with the soil to 7 m deep.
After passing through the coil, the air goes through a second isolated pipe till the environment to be conditioned. In 2015 we realized in Celenza Sul Trigno (CH) the first well vindex to cool / heat a dome-shaped space (102 m² surface and 314 m³ volume). The temperature of the soil at 7 m depth is about 15 °C all the year. In summer the hot air flowing through the vindex well is cooled, while in winter it is heated.
The vindex well in Celenza Sul Trigno is currently is up and running and the results are very satisfactory, both in economic and environmental terms.
IL RUOLO DELLE ESCO E DEL NUOVO CONTO TERMICO NELLA DIFFUSIONE DEGLI NZEB NELLE PUBBLICHE AMMINISTRAZIONI: ANALISI TECNICO-FINANZIARIA DELLA RIQUALIFICAZIONE DI UN MUNICIPIO NELLA BERGAMASCA.

Gli nZEB presentano indubbi vantaggi dal punto di vista energetico ed ambientale. Per contro, a causa dei significativi costi di realizzazione, non ne è altrettanto chiara la convenienza economica. In Lombardia l’entrata in vigore della normativa nZEB di fatto coincide con l’introduzione del Nuovo Conto Termico che, consentendo di ottenere contributi a fondo perduto fino al 65%, intende incentivare la diffusione di questo tipo di intervento.

Il presente articolo si propone quindi di valutare innanzitutto l’incremento di costo che comporta riqualificare un tipico edificio pubblico per elevare la classe energetica dagli attuali requisiti di legge a quelli imposti dalla nuova normativa nZEB, con il relativo impatto del Nuovo Conto Termico.

Quindi analizzare la convenienza economica per l’ente pubblico nei due alternativi casi di: investimento diretto totalmente sostenuto dall’ente stesso o intervento effettuato per il tramite di una ESCO.

Lo studio si conclude con una valutazione comparativa sulla convenienza di un rapporto Ente-ESCO basato su di un “contratto a risparmi condivisi” ovvero su di un “contratto a servizio energia”.

A tal scopo viene analizzato il caso reale della riqualificazione di un tipico edificio pubblico di medie dimensioni (circa 2'300 mq/6'000 mc), sede del Municipio di un paese di 10'000 abitanti nella provincia bergamasca, i cui lavori appaltati comprendono il rifacimento del tetto, l’applicazione del cappotto e la sostituzione dell’impianto climatico.

THE ROLE OF ESCOS AND NEW THERMAL ACCOUNT IN THE DIFFUSION OF NZEBs IN PUBLIC BUILDINGS: TECHNICAL AND FINANCIAL ANALYSIS OF THE REQUALIFICATION OF A TOWN HALL IN THE PROVINCE OF BERGAMO

NZEbS have undoubted advantages from an energetic and environmental point of view. Nonetheless, because of the significant investments required, economic profitability is not so evident. In Lombardy, the new legislation about NZEB is applied in conjunction with the New Thermal Account that, supporting investments with grants up to 65%, aims to encourage the diffusion of this type of intervention. The goal of this article is firstly to assess the increase in cost resulting from improving the energy class of a typical public building from the current legal requirements, to those imposed by the new NZEB legislation, while taking into account the economic impact of the New Thermal Account.

The second goal aims to analyze the cost-effectiveness of the project considering an investment fully supported by the Public Authority or, alternatively, supported by an ESCO. The study ends with a comparative assessment between a “shared savings contract” and on a “energy service contract” regulating the relationship between ESCOs and the Public authority. For this purpose, the real case of the requalification of a typical medium size public building (about 2,300 square meters / 6,000 cubic meters) has been analyzed, that is the town hall of a village of 10,000 citizens in the province of Bergamo: the contracted project includes the reconstruction of the roof, the application of the thermal coat and the replacement of the climatic system.
INFLUENCE OF CONTROL STRATEGY AND HEAT GENERATING SYSTEM ON THERMO-HYGROMETRIC COMFORT CONDITIONS WITHIN SCHOOL CLASSROOMS

This paper presents an analysis of the influence of different types of heat generator and control strategy on thermo-hygrometric comfort conditions, occurring within the classrooms of the school building Istituto G. Marconi, located in Castelfranco Emilia. The school is currently heated by two condensing boilers coupled to high temperature radiators, while the system control strategy is based on climatic compensation and the intervention of a programmable thermostat, which refers to the occupancy period of the building.

First, the behavior of actual heating system was simulated by means of the dynamic software TRNSYS, assessing the energy performance of the building and the comfort conditions guaranteed by the heating system within classrooms. The calculation was then performed by replacing the existing boilers with a multi-compressor air-to-water heat pump, coupled to low temperature terminals. The system control strategy is carried out in this case according to the measure of supply and return water temperatures to the heat pump, without the measure of external air temperature.

Results highlight how the lack of thermostats within the school does not allow a precise control of the internal temperature: classrooms exposed to West are characterized by internal temperature values much lower than the ones obtained for classrooms facing South and East. Finally, the internal comfort conditions are characterized by a high variability during the winter season.
Abstract

Indirect evaporative cooling (IEC) is an effective way to increase energy efficiency of air conditioning systems. At present, there are many ongoing research activities about IEC systems, mainly dealing with new heat exchanger materials and geometries, new humidification systems or evaluating potential primary energy savings compared to conventional devices. In this work an indirect evaporative cooling system based on a cross flow heat exchanger has been widely tested, in order to evaluate the effect of different system setup on performance. In particular, three different water nozzles positions have been analyzed: installation respectively on the top, on the side and on the bottom of the heat exchanger. Tests have been performed in typical operating conditions of data centers, where the indoor temperature is generally higher than in residential and commercial buildings and, as a consequence, energy savings are significant. Results put in evidence that best and worst performance is achieved respectively when water is supplied from the top and from the bottom of the system.

EXPERIMENTAL ANALYSIS OF PERFORMANCE OF AN INDIRECT EVAPORATIVE COOLER

Il raffreddamento evaporativo indiretto è un metodo molto efficace per incrementare l'efficienza dei sistemi di climatizzazione. Al momento sono in corso molte attività di ricerca in merito allo sviluppo di tali sistemi, in particolare riguardo nuovi materiali e geometrie dello scambiatore, nuovi sistemi di umidificazione e ai potenziali risparmi di energia rispetto ai sistemi tradizionali di climatizzazione. Nel presente lavoro un sistema di raffrescamento evaporativo indiretto, basato su uno scambiatore a flussi incrociati, è stato ampiamente testato, in modo da valutare l'effetto della posizione degli ugelli sulle prestazioni. Più precisamente sono state analizzate tre diverse configurazioni: ugelli posti nella sezione superiore, laterale e inferiore dello scambiatore. I test sono stati eseguiti in tipiche condizioni di funzionamento di data center, in cui la temperatura ambiente è generalmente maggiore di quella adottata in edifici residenziali e commerciali e, di conseguenza, possono essere ottenuti risparmi significativi di energia primaria. I risultati mettono in evidenza che le prestazioni migliori si ottengono con umidificazione dall'alto, mentre quelle peggiori con umidificazione dal basso.
GEOTERMIA IN AREA UMIDA: UNA VALUTAZIONE SPERIMENTALE

Questa memoria illustra i risultati di una campagna di monitoraggio su una pompa di calore abbinata a sonde geotermiche verticali installata nel centro storico di Venezia nel quadro della ristrutturazione di un antico palazzo dove altri fonti di energia rinnovabile, come l'energia solare, non sono ammesse a causa delle norme di tutela monumentale. Nonostante la posizione costiera, l'uso di acque superficiali o terreno non era possibile in questo caso. Infatti, il prelievo da pozzi è assolutamente vietato a Venezia, a causa del rischio di cedimento del terreno. Inoltre, come spesso accade a Venezia, i canali interni accanto all'edificio hanno portata d'acqua insufficiente. L'analisi sperimentale evidenzia prestazioni molto soddisfacenti soprattutto in confronto con l'uso alternativo di pompe di calore con sorgente aria. L'alta umidità del terreno e la portata d'acqua sotterranea presente anche negli strati superficiali del terreno risulta promuovere un rapido riequilibrio termico nell'intorno delle sonde. Per lo stesso motivo, nonostante lo squilibrio tra il calore dissipato in estate e quello estratto durante l'inverno, non è stata rilevata nel tempo alcuna conseguente degradazione termica per lo scambio con il terreno.

GEOTHERMAL ENERGY IN HIGH HUMIDITY AREAS: AN EXPERIMENTAL ASSESSMENT

This paper shows the results of a monitoring campaign on a invertible ground source heat pump (GSHP) with borehole heat exchangers installed in the historical center of Venice in the frame of the renovation of an ancient building where other renewable energy systems, such as solar energy systems, are not admitted because of historical preservation regulations. Despite the coastal position, the use of surface or ground water was not achievable in this case. In fact, the withdrawal from wells is absolutely forbidden in Venice, due to the risk of subsidence of the soil. In addition, as often happens in Venice, the internal channels next to the building have insufficient water flow rate. The experimental analysis highlights very satisfactory performance especially in comparison with the alternative use of air source heat pumps. The high humidity of the soil and the underground water flow present even in the surface layers of the soil promote the quick thermal rebalancing in the borehole field. For the same reason, although the unbalance between the heat rejected in summer and the one extracted during winter, no consequent thermal degradation of the ground heat exchange is encountered.
CONFRONTO TRA IMPIANTI A TUTT’ARIA VAV E AD ARIA PRIMARIA: L’IMPORTANZA DEL CONSUMO DEGLI AUSILIARI

La progettazione dell’impianto per la climatizzazione negli edifici nZEB richiede particolare attenzione nella valutazione delle reali prestazioni energetiche. Un adeguato livello di isolamento termico è imprescindibile per la riduzione dei consumi e consente di sfruttare maggiormente il free-cooling, non solo estivo, limitando di conseguenza il peso del consumo energetico dei generatori.

In questo scenario assume primaria importanza la valutazione ed il contenimento del consumo degli ausiliari. Gli impianti a tutta aria VAV possono sfruttare molto bene il free-cooling, ottenendo ottime prestazioni, a patto di contenere le perdite di carico lato aria minimizzano così i consumi di ventilazione.

Gli impianti ad aria primaria, al contrario, sfruttano meno il free cooling, ma riducono sensibilmente l’energia richiesta per gli ausiliari spostando di conseguenza l’attenzione sull’efficienza dei generatori. La memoria propone i risultati di un’ampia ricerca che confronta in modo analitico 3 tipologie di impianto in 5 tipologie di edificio per uffici collocato in 9 differenti città nel mondo:
- Impianto ad aria primaria con fan-coil
- Impianto ad aria primaria con soffitto radiante
- Impianto a tutt’aria VAV

FULL-AIR VAV SYSTEMS COMPARED TO FRESH-AIR SYSTEMS: IMPORTANCE OF AUXILIARY LOADS CONSUMPTION

The HVAC systems design in nearly-Zero Energy Buildings requires particular attention in the evaluation of actual energy performance. An appropriate level of thermal insulation is essential to reduce building consumption and allows a great use of free-cooling, not only summertime, thereby limiting the energy consumption of generators.

In these systems it takes primary importance the evaluation and the reduction of auxiliary consumption.

Full-air VAV systems can greatly use the free-cooling, getting good performance, as long to minimize air side pressure losses and the ventilation consumption.

Fresh-air systems, as opposed, get less advantage from free-cooling, but significantly reduce the energy consumption for auxiliary loads shifting the focus on the generators efficiency.

The paper offers the results of a wide research that analytically compares 3 types of systems in 5 types of office building located in 9 different cities around the world:
- Fresh-air system with fan-coils
- Fresh-air system with radiant ceiling
- Full-air system VAV
EFFETTO DEI REQUISITI MINIMI SUI FABBISOGNI ENERGETICI ESTIVI ED INVERNALI.

L'introduzione della nuova legislazione sui requisiti minimi delle nuove costruzioni, impone importanti cambiamenti sia nella progettazione degli impianti tecnici che degli involucri edilizi. La necessità di soddisfare la verifica di legge sul coefficiente medio globale di scambio termico impone la realizzazione di edifici sempre più isolati. Il metodo dell'edificio di riferimento permette di confrontare i consumi di energia primaria dell'edificio reale con quelli dello stesso edificio nel caso in cui vengano rispettati tutti i requisiti minimi di legge. L'isolamento termico previsto per l'edificio di riferimento utilizzato per la verifica dei requisiti minimi aumenterà nel 2019-2021 ma non cambierà il livello di schermagio dei componenti trasparenti di involucro.

Ciò può portare ad un peggioramento delle prestazioni estive passando dall'edificio di riferimento attuale a quello futuro. Infatti il carico termico estivo è principalmente dovuto all'irraggiamento solare e non allo scambio di calore attraverso le pareti esterne, che in estate può diventare un utile strumento per ridurre il carico termico entrante. Tutto ciò non è in linea con lo spirito della legge che vorrebbe guidare verso edifici sempre meno energivori. In questo studio, attraverso una serie di simulazioni numeriche, verrà dimostrato come sarà più facile per un edificio nuovo rispettare i requisiti minimi previsti in futuro rispetto a quelli attuali nel caso del servizio energetico di condizionamento estivo.

EFFECT OF THE LAW ON MINIMUM REQUIREMENTS ON WINTER AND SUMMER ENERGY NEEDS

The introduction of the new legislation on minimum requirements for new buildings, imposes relevant changes in the design of thermal plant and of building envelope. The need to satisfy the minimum requirement on mean global heat transfer coefficient leads to more and more insulated buildings.

The reference building method is used to compare the primary energy needs of the actual building with those of the same building in case of minimum requirements satisfaction. By the 2019-2021, the level of thermal insulation expected for the reference building used for the verification of minimum requirements will increase. On the other hand, the level of shading of transparent components will not change. So, using new reference building instead of the actual ones could lead to lower summer performances.

In fact, summer thermal load is mainly due to solar radiation, instead of heat exchange through external walls, which in summer can be used to reduce incoming thermal load.

This doesn’t agree with the aim of the law, which consists in helping designers to make new buildings, characterized by lower primary energy needs.

In the present work, by means of several numerical simulations, it will be shown that, for a new building, it will be easier to satisfy future minimum requirements for the energy service of the summer air conditioning than the actual ones.
BIPV ED EDIFICI STORICI: UN'INTEGRAZIONE È POSSIBILE?

L'integrazione dei pannelli fotovoltaici su edifici storici è un tema molto dibattuto. Se da un lato, la legislazione nazionale richiede un aumento progressivo dell'uso energia prodotti da fonti rinnovabili, dall'altro permane ancora una serie di difficoltà legate alla loro accettazione estetica sugli edifici storici. Il lavoro presenterà i risultati di una corretta integrazione paesaggistica e architettonica (building integrate photovoltaics - BiPV) di un sistema di pannelli in silicio amorfo su una villa ottocentesca ubicata sul Lago di Como. Dopo avere descritto le particolarità del progetto impiantistico, saranno analizzati i dati di produzione che sono monitorati in loco da un sistema ICT appositamente realizzato per ottimizzarne le prestazioni impiantistiche e le strategie di gestione. Infine, sarà analizzato il rapporto tra i consumi elettrici effettivi e la produzione energetica dell'impianto fotovoltaico.

BIPV AND HISTORIC BUILDINGS: A POSSIBLE INTEGRATION?

The integration of PV panels on historic buildings is a debated topic. On the one hand, the national legislation requires a progressive increasing of the use of renewable energy sources; on the other hand, several difficulties related to their aesthetics acceptance in historical buildings remain unsolved. The work presents the results of a proper landscape and architectural integration (building integrate photovoltaics - BiPV) of amorphous silicon panels on a villa located on Como Lake. After describing the plant details of project, the production data monitored on-site by an ICT system specifically designed to optimize plant performance and management strategies has been analyzed. Finally, the work examines also the relationship between the actual power consumption and the energy production of the PV system.
SOLUZIONI VAV/DCV PER IMPIANTI A TRAVI FREDDE

Elevate condizioni di comfort negli ambienti, unite a un’ottimizzazione dei costi di esercizio degli impianti, hanno portato a una notevole diffusione, in particolare nei Paesi del centro e nord Europa, di soluzioni VAV/DCV. Lo stesso fenomeno non ha ancora avuto la stessa rilevanza in Italia. Noti i vantaggi degli impianti a travi fredde rispetto ai tradizionali sistemi a fanciil e a tutt’aria, nella relazione si evidenzia come questi vantaggi possano crescere ulteriormente grazie all’utilizzo di nuove tecnologie che trasformano le travi fredde in sistemi VAV, con effetti positivi in termini di risparmio energetico. I miglioramenti energetici sono legati sia alla ottimizzazione della portata di ventilazione in funzione del livello di affollamento nell’ambiente, sia alla resa frigorifera prodotta dalla trave fredda. La standardizzazione e la maggiore semplificazione, conseguente al minor numero di componenti in gioco, dei sistemi a travi fredde influisce positivamente anche sui costi di realizzazione dell’impianto.

VAV/DVC SYSTEMS WITH CHILLED BEAMS

Last years have seen a growing diffusion, particularly in Center and North Europe, of ventilation systems using VAV and DCV as the best solution to drive high levels of Indoor Air Quality and, at the same time, optimization of running costs. A similar trend has not yet seen in Italy. The advantages of chilled beams versus traditional systems with fan coils or full air are well known; the paper highlights how these benefits can be further increased using new technologies that transform chilled beams into VAV systems, with positive effects in terms of energy saving. The energy improvements are linked both to the optimization of the ventilation depending from the actual occupancy in the room, and to the cooling capacity produced by the chilled beam. The standardization and simplification of chilled beam systems, due to the smaller number of components involved, have also positive effect on investment costs.
SISTEMI DI MONITORAGGIO E GESTIONE REMOTA DI UNITÀ IN POMPA DI CALORE AD ASSORBIMENTO

L’efficienza di un sottosistema di generazione non è mai determinato unicamente dall’efficienza dei generatori installati, per quanto questi possano essere caratterizzati da elevate efficienze di utilizzo dei vettori energetici. Le logiche di regolazione, la presenza e l’uso dei vari componenti della centrale termica, le abitudini degli utenti e dei gestori dell’impianto, sono tra i fattori cruciali che determinano il pieno raggiungimento degli obiettivi energetici definiti in fase di progettazione. Nella presente memoria si metterà in luce come opportuni sistemi di monitoraggio e gestione remota dei sottosistemi siano strumenti fondamentali, per consentire a qualsiasi tecnologia di generazione di poter esprimere la massima efficienza possibile. In particolare ci si concentrerà sui sottosistemi di generazione costituiti da pompe di calore ad assorbimento.

REMOTE MONITORING AND MANAGEMENT OF GAS ABSORPTION HEAT PUMPS

The global efficiency of a heating plant is not only determined by the efficiency of the installed thermal power generators, even if they are very effective in using energy.

The expected level of efficiency and performance are also due to the adjustments setup, the kind of installed components and to the users’ habits.

In this document will be described the high impact of the remote monitoring and management in order to achieve the highest possible efficiency. There will be a specific focus on the Gas Absorption Heat Pumps technology.
Considerati gli attuali orientamenti legislativi (Decreto legislativo 28/2011) che richiedono di soddisfare una crescente quota dei fabbisogni di energia per la climatizzazione con fonti rinnovabili, le pompe di calore aerotermiche appaiono particolarmente promettenti, in particolare quelle di ultima generazione con portata variabile di fluido refrigerante grazie al compressore controllato da inverter. Tuttavia, il dimensionamento della pompa di calore e la valutazione delle prestazioni stagionali della stessa sono più complessi rispetto ai sistemi di generazione più comunemente impiegati (caldaia), essendo fortemente influenzati dal clima di riferimento e dall’andamento del carico termico di climatizzazione dell’edificio. Uno degli strumenti attualmente a disposizione dei progettisti è la procedura di calcolo nota come metodo “bin”, richiesto dalla UNI TS 11300-4, in cui i “bin” sono basati su una distribuzione normale mensile di temperatura costruita su dati medi mensili. Questa distribuzione è diversa da quella ottenibile dall’anno tipo della stessa località fornito dal CTI, e tale differenza si ripercuote sulla valutazione della prestazione stagionale delle pompe di calore. I due input climatici vengono pertanto confrontati, nei diversi climi italiani, in termini di prestazioni stagionali, relative a diversi modelli di pompa di calore a inverter, e di percentuale di copertura dei carichi, considerando anche il funzionamento a carico parziale.

EVALUATION OF THE SEASONAL COP OF AIR-TO-WATER HEAT PUMPS WITH INVERTER IN DIFFERENT ITALIAN CLIMATES

Considering the current legislative tendency (Italian Decree 28/2011) that require to cover a significant part of the energy needs for air conditioning with renewable sources, air-source heat pumps seem to be a particularly promising technology, especially the latest generation units with a variable flow of refrigerant fluid through the compressor controlled by an inverter. However, the dimensioning of the heat pump and the evaluation of the seasonal performance are more complex than the commonly installed heating systems (boiler), and are strongly influenced by the reference climate and by the building load. One of the tools currently available to designers is the calculation procedure known as “bin method”, required by the Italian standard UNI TS 11300-4, where the “bins” are based on a normal temperature distribution built with monthly average data. That frequency distribution is different from the one obtained with the test reference year of the same location, provided by the CTI, and the difference has an impact on the evaluation of the seasonal performance of heat pumps. The two climatic inputs are therefore compared in Italian climates, in terms of seasonal performance (for different commercial models of inverter-driven heat pump) and in terms of covering fraction, also considering the operation at partial load.