ITALY ENERGYSCOPE: A NEW ENERGY MODEL AND ITS APPLICATION FOR DECARBONIZATION IN ITALY FOR 2050

To address the urgent challenges and risks related to climate change, an increasing number of countries and communities are working towards net-zero greenhouse gas emission targets for 2050. This deep decarbonisation transition towards more sustainable energy systems will be enabled by a high penetration of stochastic renewables, such as wind and solar. Integrating these new energy resources and technologies will lead to deep structural changes in energy systems, such as an increasing need for storage and a radical electrification of the heating and transportation sectors. To capture the increasing complexity of such future energy systems, new multi-sector multi-vector optimisation modelling tools are needed to inform policy-making.

In this work we first review existing energy planning and modelling tools, discussing advantages and disadvantages. Then, we apply EnergyScope, a novel open-source model for the strategic energy planning of urban and regional energy systems, to the deep decarbonisation of the Italian system. Concretely, we use this open-source framework to model the current state of the energy system, to assess the feasibility of net-zero emission scenarios for the year 2050, and to investigate which are the most promising resources and technologies enabling such transition.
Abstract

Authors
Ghisleni Massimo

Pres. Author
x

Affiliation
Socio AiCARR ~ Bergamo ~ Italy

NEW HYBRID COMPACT THERMODYNAMIC RECOVERY SYSTEM: POTENTIALITY IN NEW REALIZATIONS AND IN THE PLANT RENOVATION

An instrument for obtaining high results in terms of energy efficiency, both in the new nZEB realizations and in energy requalification, consists of hybrid generation subsystems with aerothermal heat pump and condensing boiler. Such systems, like heat pumps in general, are however characterized by a high degree of complexity which makes them not easy to approach. In this article, we will describe the essential features and performance of a compact system, very efficient even in conditions of prohibitive work, wall-mounted and characterized by a very simple plant engineering.
Abstract

ESEMPIO DI RISTRUTTURAZIONE DI EDIFICIO NEL CENTRO STORICO DI MILANO SOGGETTO A VINCOLO ARTISTICO, CON ELEVATI TARGET DI COMFORT, SOSTENIBILITÀ E DI GESTIONE DELL’ENERGIA.

Ristrutturazione operata da banca internazionale in Milano centro, edificio Galleria San Carlo, riqualificato nella facciata, negli interni e negli impianti. L’edificio, che ha vincoli conservativi artistici e consta di 8 piani fuori terra e 5 piani interrati, destinazione d’uso uffici, è affittato a diversi tenant da oltre un anno.

Gli impianti garantiscono il massimo comfort e la sostenibilità LEED Gold, con sistemi HVAC a basso livello entalpico, produzione termo-frigorifera ad alta efficienza, (Unità Termo-frigorifere full VFD, UTA Twin Wheel), scambio termico e distribuzione dei fluidi a portata variabile.

L’elevato comfort termico è ottenuto col pannello radiante a soffitto /aria primaria diffusa dal basso, in prossimità della pelle dell’edificio, e ripresa in quota.

Il BMS fa sì che ogni tenant possa avere evidenza dei consumi elettrici del condizionamento e di ciascun sistema tecnico; Classe A di efficienza energetica UNI EN15232, garantisce efficienza energetica e comfort in ogni condizione. Il risparmio energetico della regolazione secondo “BAC Factors” è del 20% (da Classe C automazione standard, a Classe A High Efficiency automation).

Il condizionamento con produzione, distribuzione e terminali a bassa entalpia ad acqua ed aria primaria commisurata all’effettivo fabbisogno delle utenze, la misura e il controllo dell’energia consumata dal singolo tenant, può costituire un esempio fattivo di risposta alle sfide dell’Agenda 2030 per lo sviluppo sostenibile.

EXAMPLE OF AN HISTORICAL BUILDING REMODEL IN MILAN DOWNTOWN, HIGH TARGETS IN TERM OF COMFORT, SUSTAINABILITY AND ENERGY MANAGEMENT.

The building renovation carried out by an international bank in Milan, Galleria San Carlo building, with facade, interiors and technical systems renovation. The Historical building, consists of 8 floors above ground and 5 underground floors, rented to several tenants, has been in operation from one year. The renovation got maximum comfort and sustainability LEED Gold, grace of the low enthalpy HVAC solutions, high thermo-refrigeration production efficiency (full VFD chiller unit, Twin Wheel AHU), heat exchange and distribution of fluids with variable flow dynamically balanced.

In order to achieve the expected high comfort, the system consists of radiant ceiling panels with primary air diffusion from the floor and air extraction from the ceiling.

The BMS monitor the electrical consumption of the air conditioning and of each technical system: it meets UNI EN15232 energy efficiency Class A. The energy savings according to the “BAC Factors” (from Class C standard automation, to Class A High Efficiency automation), reduces consumption by 20%.

The air conditioning system with variable production, distribution and low enthalpy terminal water devices /primary air supply according to the users demand, the meter and control of the energy consumption by the tenant, can be an effective example of response to challenges of the 2030 Agenda Sustainable Development.
SVILUPPO DI UNA POMPA DI CALORE A GAS AD ASSORBIMENTO ACQUA-AMMONIACA PER RISCALDAMENTO DOMESTICO

Le pompe di calore a gas ad assorbimento (GAHP) possono contribuire alla decarbonizzazione del settore edilizio:
- sostituendo efficientemente le caldaie a gas negli edifici con distribuzione del calore ad alta temperatura (radiatori);
- soddisfacendo il carico energetico del riscaldamento domestico senza pesare sulla capacità delle reti elettriche;
- sfruttando efficientemente vettori energetici rinnovabili come idrogeno e biometano, candidati a essere in futuro mezzi di accumulo energetico stagionale.

L'assorbimento è una tecnologia matura e l'industria italiana è eccellenza mondiale nei sistemi ad acqua-ammoniaca, adatti al riscaldamento.

Ma per assicurarne l'ampia penetrazione nel mercato residenziale e ottenere un effetto sulle emissioni complessive è fondamentale la riduzione dei costi e delle dimensioni.

Con tale obiettivo abbiamo sviluppato una GAHP acqua-ammoniaca da 7.5 kW, basata su componenti in particolare gli scambiatori di calore a piastre - derivati dalla produzione di serie, i cui produttori collaborano attivamente al progetto. La pompa a membrana e il generatore della GAHP sono stati appositamente progettati per ridurre le dimensioni a quelle di una caldaia a gas domestica.

Il prototipo, testato in laboratorio accreditato secondo la norma EN 12309-6, mostra valori significativamente positivi di SGUE (Seasonal Gas Utilization Efficiency): 1.5 calcolato sulla base del potere calorifico inferiore.

DEVELOPMENT OF AN AMMONIA-WATER GAS ABSORPTION HEAT PUMP FOR DOMESTIC HEATING GAS ABSORPTION HEAT

Pumps (GAHP) can play a major role in the decarbonization of building sector:
- by efficiently replacing gas boilers in buildings with a high-temperature heat distribution system (radiator);
- satisfying the energy demand of domestic heating without affecting the capacity of electricity grids;
- by making an efficient use of renewable energy carriers such as hydrogen and bio-methane, which are going to be seasonal energy storage in the future.

Absorption is a mature technology and the Italian industry is a world excellence in the field of ammonia-water systems, suitable for heating application. But in order to achieve a large market penetration and the expected impact on overall emissions it is necessary to reduce the cost and size of GAHPs.

With such target we have developed a 7.5 kW ammonia-water GAHP, mainly built by components – as the plate heat exchangers – derived from series production, whose manufacturers actively collaborate to the project. The diaphragm pump and the desorber have been specially designed to reduce the appliance size to that of a standard domestic gas boiler.

The prototype, tested in an accredited laboratory according to standard EN 12309-6, shows a remarkable SGUE (Seasonal Gas Utilization Efficiency) of 1.5, calculated on a net calorific value basis.
Abstract

Authors
De Santoli Livio
Piterà Luca

Pres. Author
Affiliation
Università La Sapienza Roma ~ Roma ~ Italy
x AiCARR ~ Milano ~ Italy

IL RUOLO DELL’EFFICIENZA ENERGETICA NEL LUNGO PERIODO, 2020 – 2050. PROPOSTE PER UNA PROGRAMMAZIONE NAZIONALE

Sul ruolo strategico che riveste l’efficienza energetica siamo tutti d’accordo: lo è l’industria, che la vede come strumento per imporsi sul mercato e uscire dalla crisi di questi anni, lo è la politica, che ne vede gli aspetti relativi alla crescita del Paese e all’occupazione, lo è il cittadino che paga le bollette energetiche e lo sono le Associazioni come AiCARR, che ne promuovono la cultura. Anche l’Europa ha posto tra gli obiettivi del 20-20-20 l’efficienza energetica, che paradossalmente sarà l’unico obiettivo non conseguito, nonostante si rivolga a un settore, quello dell’edilizia, che ha un potenziale di riduzione dei propri consumi dell’ordine del 30÷40 %, per raggiungere il quale sono necessari semplificazione e sostegno. È opportuno a questo punto tracciare nuovi obiettivi che facciano tesoro delle esperienze sin qui raggiunte. La resente relazione analizza il contesto attuale al fine di delineare le azioni future necessarie sul piano regolatorio, sull’introduzione di nuove figure (per esempio quella dell’aggregatore), nuovi scenari per l’efficienza energetica in edilizia e soprattutto considerare anche gli obiettivi sociali. Rendere concrete queste azioni significherà avere il controllo sul nostro futuro: in quanto l’efficienza energetica rappresenta il motore per cambiare anche la nostra società.

2020 – 2050: THE LONG TERM ENERGY EFFICIENCY PROGRAM. PROPOSALS FOR A NATIONAL PLANNING

We all agree on the energy efficiency strategy role: for the industry, which sees it as a tool to penetrate the market and emerge from the recent crisis years, for the policy, which it sees aspects of the country’s growth and employment, for the citizen who pays the energy bills and the Associations like AiCARR, which promote energy culture. Europe established energy efficiency of one of 20-20-20 objectives, that, paradoxically, it’s the only goal, will be not achieved, despite the buildings sector, which it has a potential consumption reduction between 30 ÷ 40 %, but to reach that, it’s necessary simplification and economical support. It is necessary to make treasure of the experiences achieved and define new goals for the future. This paper analyzes status quo and outline future actions needed on the legislation level, how the introduction of new figures, (for example the aggregator), how new scenarios for energy efficiency in buildings and especially also consider the objectives social. Make these concrete actions will mean having control over our future: energy efficiency is the engine to also change our society.
Abstract

Approccio olistico per la caratterizzazione delle risorse geotermiche di bassa-media entalpia

I cambiamenti climatici già in atto, la diffusione dei microinquinanti nell’atmosfera, nonché le politiche energetiche ed ambientali europee e nazionali spingono verso la ricerca e l’utilizzo di risorse energetiche rinnovabili ed ecosostenibili per supportare il processo di transizione energetica verso il 2030. Queste esigenze ambientali ed energetiche hanno costituito il punto di partenza per l’impostazione delle fasi di lavoro del processo di problem solving, integrate anche con metodologie di design thinking, che si è conclusa con l’ideazione, creazione ed implementazione di un laboratorio sperimentale focalizzato sull’esplorazione delle risorse geotermiche a bassa e media entalpia.
In particolare, tramite l’adozione di un approccio olistico, l’analisi di diversi profili di sismica riflessione profonda realizzate per la ricerca degli idrocarburi, integrata con dati litostratigrafici, idrogeologici, idrochimici e termofisici acquisiti tramite prove in situ, test di sistemi geotermici e metodi di monitoraggio innovativi, hanno permesso di fare alcune considerazioni sul comportamento idrodinamico e termofisico degli acquiferi nonché sulla risposta del sottosuolo alle sollecitazioni termiche applicate permettendo così una ottimizzazione degli impianti di geoscambio.

HOLISTIC APPROACH FOR THE CHARACTERIZATION OF LOW-TO-MEDIUM ENTHALPY GEOTHERMAL RESOURCES

The climate changes, the diffusion of micropollutants into the atmosphere, the European and national energy and environmental policies impel planners, professionals and researchers to investigate and improve the use of new renewable and eco-sustainable resources to support the process of the energy transition towards 2030. These environmental and energy needs were the starting point for setting the work phases of the problem solving process, integrated with design thinking methodologies, which ended with the idea, creation and implementation of an experimental laboratory focused on the exploration of the low-medium enthalpy geothermal resources.
In particular, through the adoption of a holistic approach, the integrated analysis of different deep seismic reflection profiles for hydrocarbon exploration, litostratigraphic, hydrogeological, hydrochemical and thermophysical data acquired through tests were carried out in the field at a test site; tests of different geothermal systems and innovative monitoring methods, allowed us to make some considerations on the hydrodynamic and thermophysical behavior of the aquifers; as well as on the response of the underground to the thermal stresses applied.