

AiCARR Journal
2016, 38, 60-65bis

Research paper

BUILDING PERFORMANCE SIMULATION PROGRAMS: BETWEEN “OPERABILITY”
AND “ADEQUACY”

Livio Mazzarella, Martina Pasini
Dipartimento di Energia, Politecnico di Milano

ABSTRACT

Energy efficiency in Buildings, combined with an efficient use of the energy provided by renewable
sources, are essential objectives set by the revision of the European Energy Performance of Buildings
Directive. To achieve these objectives, an accurate estimate of the behavior of the system to be
built/improved must be available during all stages of the design process or energy audit (if existing).
While designing or improving energy efficiency, other important and associated goals must be ad-
dressed, such as environmental health (hygrothermal, acoustic and luminous), costs, environmental
sustainability, etc. Having to choose a dynamic simulation program to inform the design process it is
necessary to analyze the possibilities offered by different available software, in terms of accuracy and
completeness, while taking into account ease of use and included facilities aimed at supporting the
design process itself. Over the past years, numerous Building Performance Simulation tools (BPSts)
have been developed with the ambition of removing some shortages of existing BPSts in addressing
today’s users’ requirements, sometimes by underestimating the reasons for those lacks of functionali-
ty. A software improvement that is focused only on usability might oversimplifies the complexity of the
model used by the tool, or its use, while a focus on rapid prototyping might respond poorly to the re-
quirements of a certain typology of users. A critical review of today’s requirements and available tools
is here presented, with the aim of informing a better awareness of possibilities offered or denied by
current BPSts.

Key words: Simulation tools, Building Energy Performance, co-simulation

1. Introduction

Energy savings in buildings, combined with an
efficient use of energy provided by renewable
sources, are essential objectives set by the re-
vision of the European Energy Performance of
Buildings Directive (European Parliament,
2010).
To achieve these objectives, an accurate esti-
mate of the energy flows, resulting by different
design/operation choices, must be available
during all stages of the design process or ener-
gy audit (with existing buildings). However, de-
signing or improving energy efficiency cannot
be conceived apart from the maintenance or
achievement of other important and concomi-
tant goals, such as assuring environmental
health (hygrothermal, acoustic and luminous),

reducing costs, pursuing environmental sus-
tainability, etc. To manage a multi-purpose de-
sign process characterized by potentially con-
flicting objectives, one or more tools are need-
ed to “inform” the designer on the outcomes of
his choices. To understand the complex nature
of the system under investigation, i.e. the build-
ing, which consists of a plurality of interacting
elements (building envelope, plant systems, us-
ers and services) tools meant to “emulate” its
behaviour (through simulation) with an assured
level of accuracy are required. These tools, re-
ferred to as dynamic simulation programs, are
based on an approximate model (mathematical,
physical, etc.) of the system under investiga-
tion, which must be able to adequately describe
its complexity, variability and interconnections.
It is understandable that the selection or defini-

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

tion of a model not appropriate to mimic the
main aspects of the system under enquiry can
lead to an erroneous or too shallow assessment
of the different, investigated, design choices. It
is therefore essential to use in a competent and
conscious way each available tool by evaluating
opportunities and possibilities offered by it.
Among the building performance simulation
tools existing today, for reasons of historical
development, it is difficult to find one that inte-
grates all the functions potentially required by a
designer, both horizontally, such as thermal,
energetic, lighting and acoustics analysis, and
vertically, such as integral equations and CFD
analysis of flow fields (Clarke and Hensen,
2015). By contrast, a number of specialized
tools have been developed in each particular
field to enable different levels of detailed analy-
sis. It follows that, for a truly integrated design,
a plethora of different tools should be used,
sometimes requiring a redundant data entry for
the description of the building or its part in
each different tool. Therefore, for the analysis
of multi-objective problems and with the in-
crease in the level of detail required to study
the different parts of the simulated system, it
becomes more and more important the possibil-
ity to establish a dialogue between various spe-
cialized tools. This dialogue should be as trans-
parent as possible to the user, i.e. the user
should do as little as possible to gain this possi-
bility and, certainly, he should not be asked to
describe the simulated system more than once.
This urgent request raised, one more time, the
question whether there are new requirements
which must be met by today's Building Perfor-
mance Simulation tools (BPSts).
The first element to consider is that today the
potential user of such tools is not anymore
“unique” as in the past; currently the figures in-
volved in the evolution of these tools can be di-
vided into three categories:
- the “basic” user;
- the “advanced” user;
- the developer.
The major concerns of the basic user are:
- the reduction of the time required for model-

ing, data entry and analysis of the results
gained by multiple design alternatives. To
support the decision process, each of these
design alternatives should be identified by
indicators calculated by the tool, meant to
quantify the performance of the system with

respect to a sufficient number of economi-
cal/functional aspects;

- the possibility of accurately simulate the
largest number of existing and/or under-
developing systems.

These two desires identify two main require-
ments for the BPSt: “operability”, which an-
swers to the first concern, and “adequacy”,
which meets the second request by embracing
completeness and accuracy of the models im-
plemented in BPSts.
As confirmed by one of the last surveys submit-
ted to the experts of the sector (Attia, et al
2012), these two macro categories of require-
ments, divided into several and more detailed
sub-categories, are deemed as the most im-
portant ones by the basic user, even though
their relative importance is influenced by the
cultural background of each user (architectural
or engineering). Luckily, however, the quest for
“short learning time” has become, for such in-
struments, of secondary importance. As a mat-
ter of fact, given the importance that building
energy efficiency has reach in recent years, the
necessity to gain sufficient knowledge for using
such tools has been finally and deservedly rec-
ognized/accepted.
In addition to the necessities of basic users,
those related to advanced users and developers
have significant relevance too. The continuous
update of these instruments is in fact crucial for
their survival. It is therefore fundamental to
add additional requirements to those of the
basic user, such those of being easily customi-
zable, expandable and maintainable.
In the following paragraphs, we will try to ana-
lyze and summarize the conditions which BPSts
should meet and the different answers that
have been given to these needs by the existing
BPSts.

2. ESSENTIAL REQUIREMENTS

The two main requirements that have been
identified before were analyzed in more detail
in the survey mentioned earlier (Attia, et al,
2012), where the following sub-requirements
have been further explained:
1. Usability and Information Management

(UIM) of interface;
2. Integration of Intelligent design Knowledge-

Base (IIKB);

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

3. Accuracy of tools and Ability to simulate De-
tailed and Complex building Components
(AADCC);

4. Interoperability of Building Modelling (IBM);
5. Integration with Building Design Process

(IBDP).
To these requirements other two can be added,
due to the spread of cloud services and the
growing need to make calculations that require
significant computational processing time (Maz-
zarella, et al 2014), i.e.:
- the ubiquity and shareability of project files

(in the form of BIM, simulation models, final
reports, etc.);

- the reduction of the required calculation
time, especially in case of multi-objective op-
timization and/or multi-physical simulations
(CFD, ray-tracing, etc.), through the optimi-
zation and parallelization of the code.

2.1. Operability vs Adequacy
Operability includes all the sub-requirements
listed above except one, i.e. the adequacy,
which is fully described by the requirement
AADCC (accuracy and completeness). It must
be noted that the adequacy of a software does
not imply the correctness of its final results,
which also depend on the way of application of
the specific instrument. In fact, an appropriate
tool can be misused if the user introduces an
inadequate representative model of the system
under enquiry. This latter aspect, dominated by
users’ expertise, will not be further argued in
current discussion.
Even if the two identified families of require-
ments are considered the most important by
the users of BPSts, their relative importance is
not equally considered by all of them (Attia, et
al 2012). This difference in users’ expectations
has led to some of the shortcomings showed by
current BPSts, as the result of a divergent ori-
entation of the development market of such
tools. As a matter of fact, a category of users
has shown more interest in the automation of
the design process via an IIKB, while the other
in the AADC (Attia, et al 2012). This has led
some developers to work primarily on the
graphical user interface and on simplifying data
entry (operability), without devoting too much
concern about other aspects, in opposition to
other developers who have done little to simpli-

fy the input process, but have dedicated their
efforts on the quality of calculation algorithms
(adequacy). A simulation tool that is responsive
to current requirements, however, must be de-
veloped respecting both these expectations.
This can only happen when the different fig-
ures, able to drive the development of BPSts,
will share the same aims, as stated in (Attia, et
al 2012): “the typical uni-disciplinary design
process where the architect and engineers work
in separate islands and with no performance
goals cannot achieve the new millennium objec-
tives”.
Therefore, it is important to pursue “operability”
requirements, without producing adverse ef-
fects in terms of adequacy of the obtained re-
sults. The answer to these requirements can be
neither to simplify the underlying simulation
model regardless of its real complexity, nor to
over-simplify the use of a complex model by
deceiving its properties. To understand how
these complexity reduction mechanisms should
be combined with the accuracy of the simula-
tion results, while maintaining a sufficient com-
pleteness, it is better to take a step back and
ask ourselves what confidence we have with
the degree of accuracy of the calculations per-
formed by the different BPSts available on the
market.

2.2 Accuracy Assessment
In recent years, a renewed attention has been
paid to the assessment of the degree of error
reached by the estimates gained through BPSts.
In particular, it has been given greater atten-
tion to the errors made in the assessment of
zone air temperatures, or air nodes tempera-
tures. In the past, the main interest was mainly
fixed upon the assessment of integral errors in
terms of energy use, while little was said about
the estimation of the temperatures reached by
the different components of the building sys-
tem. If we recognize the same importance to
energy consumes and thermal comfort re-
quirements, a correct evaluation of the tem-
poral profiles of the temperatures reached at
the inner surface of the walls and by air vol-
umes becomes a matter of principal im-
portance.
In this regard, it is central to underline one of
the results obtained during the definition of a
methodology for the empirical validation of
BPSts, developed as part of Annex 58 of the

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

IEA Project ECB “Reliable Building Energy Per-
formance Characterisation Based on Full Scale
Dynamic Measurements” [1]. The results ob-
tained from a first sample application of this
methodology (Strachan et al 2015), have, in
fact, revealed that none of the most popular
BPSts has produced results that excel in terms
of accuracy, in all the metrics used, compared
to the others.
First, it should be pointed out how important is
the definition of a set of different metrics by
which to evaluate the accuracy of the calcula-
tion and of a set of variables, of different na-
ture, temperatures and flows, to which apply
each of the previously defined metrics, to un-
derstand the different distribution of the errors
made in the evaluation of a variable. The IEA
Annex 58 validation methodology has identified
two “significant indexes” upon which assessing
the accuracy achieved in the estimate of the
different variables of interest (Strachan et al
2015), i.e.:
- a “magnitude fit” index;
- a “shape fit” index, or level of correspond-

ence in the shape of the profile assumed by
the considered variable.

The first index, of “magnitude fit”, was defined
as the absolute average difference between
measurement and prediction gained for each
variable of interest, for each experimental peri-
od. The second index, of “shape fit”, was given
by Spearman’s rank correlation coefficient
(Kendall and Gibbons 1990) between predic-
tions and measurements of the same variables.
These two metrics were applied to air node
temperatures and to the power supplied by the
heating system.
To these metrics and variables, however, it may
be useful to add some more assessments. For
example, the set of variables, to which apply
the different metrics, could be extended to the
inside surface temperature of the walls of the
different thermal zones, while the applied met-
rics may include other assessments practical for
understanding the level of matching of the
shape of the profile or “shape fit” assumed by
each variable. In fact, the coefficient of Spear-
man is a mean value index, while it might be
useful to have information relative to the time
lag eventually detected on the occurrence of
peak values in predicted and measured variable
or relative to the estimation error of these peak
values, which was one of the metrics used in

some previous methodology, such as the
ASHRAE Standard 140-2011 (ASHRAE, 2011).
Even this example of application of the pro-
posed validation methodology showed signifi-
cant differences in the evaluation of air nodes
temperatures obtained from different models
and tools and has confirmed the importance of
the identification of the metrics and methodolo-
gy to be used for evaluating the accuracy of
currently available BPSts to enable the compari-
son of the results gained by them. Often, in
fact, the different BPSts are tested by following
different validations methodologies and/or the
obtained results are summarized only partially,
making the comparison between the different
tools more complex.

2.3. Evolutionary growth
A BPSt, by describing complex and evolving
systems, must be subjected to a continuous
development/update. The chosen development
model could determine its success or disposal,
as described by (Fischer, et al 1994). Fischer
has identified as the unique model applicable to
such systems (highly complex and constantly
evolving) the SER model: “Seeding, Evolution-
ary growth, and Reseeding”, showed in Figure
1. This model relies on a perpetual cyclic pro-
cess where periods of not planned evolutionary
activity, in the hands of the users, are followed
by scheduled periods of (re)structuring and
capitalizing on the work previously done, with
the help of IT developers.
BPSts could therefore benefit from a structure
that allows them to evolve with their users’ ex-
perience, enabling them to adapt and respond
to unknown requirements during the early
stages of development. This development mod-
el is in fact based on the belief that human-
computer interaction will evolve from “easy to
use” (which does not mean that skills related to
the understanding of the inherent complexity of
the tool are not necessary) to “easy to develop”
(Fischer et al., 2004). Examples of End User
Development (EUD) are represented by the
ability to record or write macros in Visual Basic
within a spreadsheet or the ability to use a par-
ticular language for the configuration of a CAD
drawing. The importance of facilitating such
Evolutionary Growth is, as a matter of fact, one
of the drivers/catalysts in the use of general-
purpose programs. These kinds of tools have

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

Figure 1 – Seeding, Evolutionary growth, and Reseed-
ing development model for complex and evolving sys-
tems.

have been in fact created to facilitate the defi-
nition of mathematical models not yet imple-
mented in available BPSts.
It will be necessary, of course, to implement
levels of “user-customization” characterized by
different development difficulties (simple, ad-
vanced and expert) and, for each level, the
most suitable tool should be identified and im-
plemented. Therefore, the user should not be-
come an IT “expert”, regardless of the level of
“personalization” desired, however, if this de-
sire for modification is high, more computer
skills may be needed.
An important activity that requires no computer
skills could be the enrichment of the database
of “components” available for the simulation.
This enrichment could be performed by enter-
ing data, relative to product available on the
market, through web pages, according to the
exchange format which is more adequate to be
used by dynamic simulation codes.
An activity that would call for greater commit-
ment is that of implementing new models or
modifying existing ones. In these cases, to al-
low a good cooperation between different de-
velopers separated in space and/or in time, it
would be of fundamental importance to imple-
ment a clear code structure, to define useful
development rules, to clearly present the re-
sults achieved and to continuously manage and
document the code developed.
This type of evolution, from time to time, has
been considered sufficient to determine the
success of a software against another. Such a
type of evolution, however, leads to the crea-
tion of different parts of code, created by dif-
ferent mindsets, sometimes to tackle contingent
problems, which sometimes are not properly
coordinated or harmonized or are in partial
overlap with each other’s. Such an “heteroge-
neously” evolved system could benefit greatly
from a better structuring, generalization and

formalization. This Reseeding phase should
push IT developers to collaborate again with
the experts of the application sector of the
software and would allow the re-
implementation to benefit from new languages,
frameworks and IT technologies previously not
available.

3. EXISTING TYPES OF BPSt

In the web page “Building Energy Software
Tools” [2], until recently managed by the US
Department of Energy and devoted to briefly
present currently available BPSts, by selecting
the filter “Whole-building Energy Simulation”,
we will get a list of 42 software, ranging from
more or less complex calculation engines
(among the best known: EnergyPlus, ESP-r,
TRNSYS, IDA/ICE and the Modelica Buildings
library) to graphical user interfaces designed for
supporting the use of such calculation engines
(among the best known: DesignBuilder and
Openstudio). In some cases, it is not immediate
to understand if you are watching an interface
to a calculation engine (and in this case, which
calculation engine) or a calculation engine.
Sometimes, even though not always, together
with the tool are distributed also the input files
used during the validation process of the BPST
and the documentation summarizing all or parts
of its results. These two aspects are indeed of
fundamental importance to compare the differ-
ent BPSts in term of both “Operability” and “Ac-
curacy”.
Certain of those programs, such as IDA ICE and
the Buildings Modelica library, are born with the
idea of exploiting languages more close to
those of the scope of the application of BPSts,
along with a general-purpose computing en-
gine, to make the evolutionary growth phase
more practical by a user non expert in infor-
mation technology and/or numerical analysis.
Currently available tools can be therefore
grouped in two main families:
- special-purpose programs;
- general-purpose programs.

3.1. Special-purpose programs
“Special-purpose programs” are programs writ-
ten in a computer language, like “C” or
“FORTRAN”, with their relative evolutions, for

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

solving a well-defined problem. The develop-
ment of this kind of tools starts with the defini-
tion of a specific problem, characterized by a
certain structure and nature. For this specific
problem, an efficient numerical/computational
solution is sought and implemented. This ap-
proach is eligible to achieve a good robustness
of the implemented code and limits the risk of
generating ill-defined problems, as long as the
input data are reasonable.
The specific nature of these programs do not
preclude a modular structure, which is more or
less favorable to the inclusion of new pieces of
code. TRNSYS, for example, allow to easily in-
clude new implementations which are relative
to technical-systems parts, while it is not the
same for changing/expanding models which are
relative to the building. This greater or lesser
ease in the management/enrichment of the
code is sometimes linked to commercial issues,
although more often it is due to the structure
with which the computational model has been
implemented for a particular system, such that
of the building. In some cases, in fact, such as
ESP-r, the computational model that imple-
ments the mathematical model for the ex-
change of mass and energy within a building is
implemented in a single matrix, which is then
partitioned in order to reduce the calculation
time. This matrix, in fact, can reach significant
size, leading to long calculation times for its in-
version. Numerical analysis, suggests methods
for partitioning sparse matrices aimed at reduc-
ing required computation time, but to add or
change parts of the mathematical model repre-
sented computationally by this matrix, it is nec-
essary to understand its structure and it might
be needed to consider new partition routines, if
the latter ones had not been implemented fol-
lowing an appropriate “a priori” logic. Another
approach used to reduce problems of handling
such large matrixes, had been to introduce
“generic” addenda into the equations of the
mathematical models implemented inside these
matrixes, in order to allow, through their use,
to introduce aspects not previously considered.

3.2. General-purpose programs
General-purpose programs are created to solve
any kind of problem which the user might de-
cide to describe in it. The user of such a type of
software, to simulate a given system must, in
general, define a physical model, then its

mathematical model, and then introduce it in
the program, through its specific programming
language. For the solution of this model, the
program exploits the numerical libraries includ-
ed in it, but which may not always be adequate
to the needs. For example, if the mathematical
model is described by a differential equation of
partial derivatives and numerical libraries avail-
able to the program, as in the case of Modelica
and IDA ICE, are only capable of solving ordi-
nary differential equations, the user must
change the mathematical model which he in-
tends to simulate in order to revert to what is
resolvable by the general-purpose program that
he is using. As well as forcing the user to build
a mathematical model of the system to be sim-
ulated, which involves specific skills not owned
by all potential users, such programs often re-
quire the knowledge of a proprietary program-
ming language, which is functional to the for-
mal description of equations involved in the
system, more that to the implementation of
numerical algorithms.
The purpose of this type of programs, charac-
terized by high extensibility and flexibility within
the domain of operation, is to limit the respon-
sibilities assigned to the developer to the model
description, by delegating their numerical solu-
tion to the libraries implemented in the tool.
Among the general-purpose programs must be
cited Dymola, OpenModelica and IDA ICE.
Dymola is the most used commercial front-end
for Modelica, while OpenModelica is its free al-
ternative. Modelica is a declarative language for
object-oriented modeling. The Neutral Model
Format (NMF) is the language, introduced in
the late ‘80s by Per Sahlin (Sahlin and Sowell,
1989), upon which was developed IDA ICE and
which was the predecessor of the Modelica lan-
guage. While IDA-ICE is born for the simulation
of building performance and therefore is native-
ly equipped with a library of specific component
models recalled transparently by the user
through a graphical interface (which therefore
can avoid building the various mathematical
models through programming language), Mod-
elica, which maintains its general purpose fea-
ture, supports this objective through the "Build-
ings Modelica library", an open source library
developed for this purpose. However, from the
developer's point of view (and not from that of
BPSt users) there are some cases, such as the
calculation of the form factors between com-

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

plex geometries, for which the biggest problem
does not lie in writing of one or more mathe-
matical equations, but in the optimized man-
agement of the numerical calculation process.
In these cases, the proprietary programming
language, aimed at the formal description of
equations, is less efficient and functional than a
classic programming language, such as C ++, C
#, Fortran, etc.
Some disadvantages of the approach used in
these type of programs are: lack of computa-
tional efficiency, limitations in the solution of
mathematical systems whose numerical transla-
tion is not already included in the numerical li-
braries available to the program and difficulties
in understanding error messages generated by
the program during the simulation, because of
the symbolic manipulation applied to the sys-
tem of equations.
Another example of general-purpose programs
includes the use of Matlab, coupled to Simulink
for the definition of blocks meant to simulate
the building system.
In this case Simulink offers its drag and drop
functionality while Matlab an extensive library
of numerical and statistical methods. However,
some drawbacks of this approach have been
pointed out by (Zupančič and Sodja, 2008),
such as:
- It imposes the development of procedural

models;
- It assumes that a system can be decom-

posed into block diagram structures with
causal interactions;

- It is a “signal-oriented” environment, that
often leads to algebraic loops whose numeri-
cal resolution might be risky;

- Developing something in this context implies
the cost of the Matlab-Simulink license.

3.2. Co-simulation
The possibility to couple special-purpose codes
between each other can be a solution when the
dimension of the tool, in term of lines of code,
poses difficulties in the maintenance and
growth of the tool.
An example of the implementation of this cou-
pling is represented by the development of a
new group of elements within EnergyPlus, such
as the “ExternalInterface”. To implement such
coupling, whose management is not yet com-
pletely transparent to the user, changes in the
EnergyPlus code have been required and, in

some cases, a manager is required for the ex-
change of information between involved
agents. This manager, an implementation of
which is the Building Controls Virtual Test Bed
(BCVTB), can be avoided when using the Func-
tional Mock-up Units Import (FMU) option in
EnergyPlus. In both cases, this coupling is
meant to assign externally calculated values to
those variables of a monolithic software, for
which the external interface has been expressly
developed. At the moment, the use of this op-
portunity has been mainly related to “loosely
coupled” problems, i.e. problems for which it
was not “strictly necessary” to perform an itera-
tive interaction between the various actors. In
particular, in EnergyPlus the external interface
has been defined, up to now, for three types of
input, namely:
- ExternalInterface:Schedule, or ExternalInter-

face:FunctionalMockupUnitImpot:To:Schedule
- ExternalInterface:Actuator or ExternalInter-

face:FunctionalMockupUnitImport:To:Actuator
- ExternalInterface:Variable or ExternalInter-

face:FunctionalMockupUnitImport:To:Variable.
Other external interfaces have been defined to
expose to the other actors the output of Ener-
gyPlus calculations, such as the:
- Output:Variable;
- EnergyManagementSystem: OutputVariable;
 ExternalInter-

face:FunctionalMockupUnitImport:From:Vari
able

While the function of the first two input inter-
faces is easy to understand and their nature of
“controller-actuator” can be recognized, the last
might seem more general, but it actually has a
feature similar to the EnergyManagement-
System:GlobalVariable (an internal object of
EnergyPlus for plant management), i.e. to pass
values to variables of a specific EnergyPlus in-
ternal modeling language for the definition of
control and management systems, called Ener-
gy Runtime language (Erl). The difference be-
tween this approach and that managed inter-
nally by EnergyPlus, is that in this case, the
numerical value passed from the external inter-
face to EnergyPlus at the beginning of each
time step for a thermal zone, remains constant
within this time step, not allowing the change
due to iterations performed within the same
time step. A strategy of this kind could be inef-
ficient, in some cases, both in computational
and implementative terms. The development of

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

a special-purpose software that has been im-
plemented according to an “enhanced modu-
larity” (Mazzarella and Pasini, 2009) might be
more efficient than such a coupling, thanks to
some facilities offered by the structure of ob-
ject-oriented programming. Thanks to object-
oriented paradigms, the developer can easily
locate the piece of code to be replaced and/or
extended and modify it, by maintaining its “rel-
ative position” with respect to other calculation
procedures, by inheriting already implemented
functionalities that might be useful for the new
implementation.
Another concern, when coupling different tools,
regards the risk of an inappropriate use of
models born with specific assumptions, perhaps
forgotten over the years. Often, in fact, some
of these programs have evolved over many
years and contains solutions considered suffi-
ciently satisfactory for a given historical mo-
ment or which represented the only possibility
for the time. For example, today EnergyPlus re-
quires a time step of calculation of maximum 3
minutes when the finite difference method is
selected for the computation of heat exchange
by conduction within the walls. This short time
step does not blend well with models that do
not consider the response time of the simulated
systems and, more generally, with system-
related stationary models. A stationary model
for the simulation of HVAC systems was in fact
well suited until the time step of discretization
was of the order of one hour. To avoid such
coupling problems, the tool should generate er-
ror messages when the time step is not suffi-
ciently bigger than the characteristic time of
those models simulated with steady state solu-
tions. The coupling of different tools must
therefore be pursued only after a careful analy-
sis of the tools to be joined has been per-
formed.
The Reseeding phase would be functional, in
such cases, to rationalize what has been devel-
oped over a long period, by verifying appropri-
ateness and consistency of the different parts
of the code and by combining those parts in the
most efficient way.

CONCLUSION

When choosing among currently available BPSts
to design buildings and/or larger systems, to be

as efficient as possible and to be able to profi-
ciently exploit energies from renewable
sources, it is necessary to consider the possibili-
ties offered by the different BPSts in terms of
accuracy and completeness, while taking into
account ease of use and support facilities for
the design process, eventually included in the
tool.
Unfortunately, the assessment of the accuracy
of the different tools is still a difficult process.
As a matter of fact, currently available BPSts do
not give the same results, especially when es-
timating variables considered of secondary im-
portance in the past. Besides, not always, all
the supports useful for comparing their results
accuracy are given together with the tool, such
as the input files for the software, which im-
plement the models outlined in the validation
procedure and a complete report containing all
the indexes defined in the validation methodol-
ogy, applied to all the identified variables. Cer-
tainly, the difference between simulation and
operation is partially due by the randomness of
some of the drivers of the simulation, which
cannot be represented by a single scenario, and
the knowledge of the accuracy achieved in each
scenario is the starting point to be able to con-
sider many of them, in order to evaluate the
performance of the designed system in differ-
ent circumstances.
Given the difficulty of pursuing simultaneously
objectives potentially conflictual, such as “oper-
ability” and “adequacy”, the efforts spent in de-
veloping BPSts have been torn apart, resulting
in the distribution on the market of a number of
tools, with very different features.
New general-purpose programs have tried to
give an answer to the need of rapid model de-
velopment and/or coupling of existing models
developed for the simulation of parts of the sys-
tem under enquiry, while many of the new im-
plementations of special-purpose software have
been focused on incrementing ease of use,
sometimes by reducing the complexity of the
simulated system. Co-simulation has tried to
address the difficulties involved in modifying
the oldest special-purpose programs. However,
not always what can be coupled, should be
coupled or is efficiently coupled from a compu-
tational and implementative point of view,
therefore caution is advised in using such solu-
tions.
In conclusion it must be put in evidence that for

Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy”

a tool to be easily maintainable and extensible,
the choice is not compulsory among general-
purpose or special-purpose solutions, but lies in
the implementation of an architecture for the
code, which is characterized by enough modu-
larity. It is important also to remember, that no
BPSt can compensate for a lack of user exper-
tise in creating a proper representative model
of the system at enquiry.

REFERENCES

ASHRAE Standard 140-2011. 2011. Standard
Method of Test for the Evaluation of Build-
ing Energy Analysis Computer Programs.
ASHRAE, Atlanta, GA.

Attia S., Hensen J.L.M., Bertran L., De Herde A.
2012. Selection criteria for building perfor-
mance simulation tools: contrasting archi-
tects’ and engineers’ needs. Journal of
Building Performance Simulation, 5(3), 155-
169.

Clarke J.A., Hensen J.L.M. 2015. Integrated
building performance simulation: Progress,
prospects and requirements. Building and
Environment, 91, 294-306.

European Parliament, 2010. Directive
2010/31/EU of the European Parliament and
of the Council of 19 May 2010 on the ener-
gy performance of buildings (recast). Offi-
cial Journal of the European Union, 18(06).

Fischer G., Giaccardi E., Ye Y., Sutcliffe A. G.,
Mehandjiev N. 2004. Meta-Design: A Mani-
festo for End-User Development. Communi-
cations of the ACM, 47(9), 33-37.

Fischer G., McCall R., Ostwald J., Reeves B.,
Shipman F. 1994. Seeding, evolutionary
growth and reseeding. Proc. of the SIGCHI
conference on Human factors in computing
systems, Boston, United States, 292-298.

IEA Annex 58 2015. Reliable Building Energy
Performance Characterisation Based on Full
Scale Dynamic Measurements.
http://www.kuleuven.be/bwf/projects/anne
x58.

Kendall M., Gibbons J.D. 1990. Rank Correla-
tionMethods. 5th ed., 69–77. London: Ed-
ward Arnold.

Mazzarella L., Pasini, M. 2009. Building energy
simulation and object-oriented modelling:

review and reflections upon achieved results
and further developments. Proceedings of
Eleventh International IBPSA Conference,
Glasgow, July 27-30, 638-645.

Mazzarella L., Pasini M., Hoonejani Shahmandi
N. 2014. Challenges, Limitations, and Suc-
cess of Cloud Computing for Parallel Simula-
tion of Multiple Scenario and Co-Simulation.
2014 ASHRAE/IBPSA-USA Building Simula-
tion Conference Atlanta, GA September 10-
12.

Sahlin P., Sowell E.F. 1989. A neutral format for
building simulation models, Proc. of IBPSA
’89 Conference, Vancouver, Canada, 147-
154.

Strachan P., Svehla K., Heusler I., Kersken M.
2015. Whole model empirical validation on a
full-scale building. Journal of Building Per-
formance Simulation, 1-20.

Zupančič B., Sodja A. 2008. Object oriented
modelling of variable envelope properties in
buildings. WSEAS Transactions on Systems
and Control, 3(12), 1046-1056.

	ABSTRACT
	1. Introduction
	2. ESSENTIAL REQUIREMENTS
	2.1. Operability vs Adequacy
	2.2 Accuracy Assessment
	2.3. Evolutionary growth

	3. EXISTING TYPES OF BPSt
	3.1. Special-purpose programs
	3.2. General-purpose programs
	3.2. Co-simulation

	CONCLUSION
	REFERENCES

