
 

 

AiCARR Journal 
2016, 38, 60-65bis 

 
Research paper 

 

 
 

 
 

 

 
 

BUILDING PERFORMANCE SIMULATION PROGRAMS: BETWEEN “OPERABILITY” 
AND “ADEQUACY” 

Livio Mazzarella, Martina Pasini 
Dipartimento di Energia, Politecnico di Milano 

ABSTRACT 

Energy efficiency in Buildings, combined with an efficient use of the energy provided by renewable 
sources, are essential objectives set by the revision of the European Energy Performance of Buildings 
Directive. To achieve these objectives, an accurate estimate of the behavior of the system to be 
built/improved must be available during all stages of the design process or energy audit (if existing). 
While designing or improving energy efficiency, other important and associated goals must be ad-
dressed, such as environmental health (hygrothermal, acoustic and luminous), costs, environmental 
sustainability, etc. Having to choose a dynamic simulation program to inform the design process it is 
necessary to analyze the possibilities offered by different available software, in terms of accuracy and 
completeness, while taking into account ease of use and included facilities aimed at supporting the 
design process itself. Over the past years, numerous Building Performance Simulation tools (BPSts) 
have been developed with the ambition of removing some shortages of existing BPSts in addressing 
today’s users’ requirements, sometimes by underestimating the reasons for those lacks of functionali-
ty. A software improvement that is focused only on usability might oversimplifies the complexity of the 
model used by the tool, or its use, while a focus on rapid prototyping might respond poorly to the re-
quirements of a certain typology of users. A critical review of today’s requirements and available tools 
is here presented, with the aim of informing a better awareness of possibilities offered or denied by 
current BPSts. 
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1. Introduction 

Energy savings in buildings, combined with an 
efficient use of energy provided by renewable 
sources, are essential objectives set by the re-
vision of the European Energy Performance of 
Buildings Directive (European Parliament, 
2010). 
To achieve these objectives, an accurate esti-
mate of the energy flows, resulting by different 
design/operation choices, must be available 
during all stages of the design process or ener-
gy audit (with existing buildings). However, de-
signing or improving energy efficiency cannot 
be conceived apart from the maintenance or 
achievement of other important and concomi-
tant goals, such as assuring environmental 
health (hygrothermal, acoustic and luminous), 

reducing costs, pursuing environmental sus-
tainability, etc. To manage a multi-purpose de-
sign process characterized by potentially con-
flicting objectives, one or more tools are need-
ed to “inform” the designer on the outcomes of 
his choices. To understand the complex nature 
of the system under investigation, i.e. the build-
ing, which consists of a plurality of interacting 
elements (building envelope, plant systems, us-
ers and services) tools meant to “emulate” its 
behaviour (through simulation) with an assured 
level of accuracy are required. These tools, re-
ferred to as dynamic simulation programs, are 
based on an approximate model (mathematical, 
physical, etc.) of the system under investiga-
tion, which must be able to adequately describe 
its complexity, variability and interconnections. 
It is understandable that the selection or defini-
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tion of a model not appropriate to mimic the 
main aspects of the system under enquiry can 
lead to an erroneous or too shallow assessment 
of the different, investigated, design choices. It 
is therefore essential to use in a competent and 
conscious way each available tool by evaluating 
opportunities and possibilities offered by it. 
Among the building performance simulation 
tools existing today, for reasons of historical 
development, it is difficult to find one that inte-
grates all the functions potentially required by a 
designer, both horizontally, such as thermal, 
energetic, lighting and acoustics analysis, and 
vertically, such as integral equations and CFD 
analysis of flow fields (Clarke and Hensen, 
2015). By contrast, a number of specialized 
tools have been developed in each particular 
field to enable different levels of detailed analy-
sis. It follows that, for a truly integrated design, 
a plethora of different tools should be used, 
sometimes requiring a redundant data entry for 
the description of the building or its part in 
each different tool. Therefore, for the analysis 
of multi-objective problems and with the in-
crease in the level of detail required to study 
the different parts of the simulated system, it 
becomes more and more important the possibil-
ity to establish a dialogue between various spe-
cialized tools. This dialogue should be as trans-
parent as possible to the user, i.e. the user 
should do as little as possible to gain this possi-
bility and, certainly, he should not be asked to 
describe the simulated system more than once. 
This urgent request raised, one more time, the 
question whether there are new requirements 
which must be met by today's Building Perfor-
mance Simulation tools (BPSts). 
The first element to consider is that today the 
potential user of such tools is not anymore 
“unique” as in the past; currently the figures in-
volved in the evolution of these tools can be di-
vided into three categories: 
- the “basic” user; 
- the “advanced” user; 
- the developer. 
The major concerns of the basic user are: 
- the reduction of the time required for model-

ing, data entry and analysis of the results 
gained by multiple design alternatives. To 
support the decision process, each of these 
design alternatives should be identified by 
indicators calculated by the tool, meant to 
quantify the performance of the system with 

respect to a sufficient number of economi-
cal/functional aspects; 

- the possibility of accurately simulate the 
largest number of existing and/or under-
developing systems. 

These two desires identify two main require-
ments for the BPSt: “operability”, which an-
swers to the first concern, and “adequacy”, 
which meets the second request by embracing 
completeness and accuracy of the models im-
plemented in BPSts. 
As confirmed by one of the last surveys submit-
ted to the experts of the sector (Attia, et al 
2012), these two macro categories of require-
ments, divided into several and more detailed 
sub-categories, are deemed as the most im-
portant ones by the basic user, even though 
their relative importance is influenced by the 
cultural background of each user (architectural 
or engineering). Luckily, however, the quest for 
“short learning time” has become, for such in-
struments, of secondary importance. As a mat-
ter of fact, given the importance that building 
energy efficiency has reach in recent years, the 
necessity to gain sufficient knowledge for using 
such tools has been finally and deservedly rec-
ognized/accepted. 
In addition to the necessities of basic users, 
those related to advanced users and developers 
have significant relevance too. The continuous 
update of these instruments is in fact crucial for 
their survival. It is therefore fundamental to 
add additional requirements to those of the 
basic user, such those of being easily customi-
zable, expandable and maintainable. 
In the following paragraphs, we will try to ana-
lyze and summarize the conditions which BPSts 
should meet and the different answers that 
have been given to these needs by the existing 
BPSts. 

2. ESSENTIAL REQUIREMENTS 

The two main requirements that have been 
identified before were analyzed in more detail 
in the survey mentioned earlier (Attia, et al, 
2012), where the following sub-requirements 
have been further explained: 
1. Usability and Information Management 

(UIM) of interface; 
2. Integration of Intelligent design Knowledge-

Base (IIKB); 



Mazzarella, Pasini: Building performance simulation programs: between “operability” and “adequacy” 

 
 

3. Accuracy of tools and Ability to simulate De-
tailed and Complex building Components 
(AADCC); 

4. Interoperability of Building Modelling (IBM); 
5. Integration with Building Design Process 

(IBDP). 
To these requirements other two can be added, 
due to the spread of cloud services and the 
growing need to make calculations that require 
significant computational processing time (Maz-
zarella, et al 2014), i.e.: 
- the ubiquity and shareability of project files 

(in the form of BIM, simulation models, final 
reports, etc.); 

- the reduction of the required calculation 
time, especially in case of multi-objective op-
timization and/or multi-physical simulations 
(CFD, ray-tracing, etc.), through the optimi-
zation and parallelization of the code. 

 

2.1. Operability vs Adequacy 
Operability includes all the sub-requirements 
listed above except one, i.e. the adequacy, 
which is fully described by the requirement 
AADCC (accuracy and completeness). It must 
be noted that the adequacy of a software does 
not imply the correctness of its final results, 
which also depend on the way of application of 
the specific instrument. In fact, an appropriate 
tool can be misused if the user introduces an 
inadequate representative model of the system 
under enquiry. This latter aspect, dominated by 
users’ expertise, will not be further argued in 
current discussion. 
Even if the two identified families of require-
ments are considered the most important by 
the users of BPSts, their relative importance is 
not equally considered by all of them (Attia, et 
al 2012). This difference in users’ expectations 
has led to some of the shortcomings showed by 
current BPSts, as the result of a divergent ori-
entation of the development market of such 
tools. As a matter of fact, a category of users 
has shown more interest in the automation of 
the design process via an IIKB, while the other 
in the AADC (Attia, et al 2012). This has led 
some developers to work primarily on the 
graphical user interface and on simplifying data 
entry (operability), without devoting too much 
concern about other aspects, in opposition to 
other developers who have done little to simpli-

fy the input process, but have dedicated their 
efforts on the quality of calculation algorithms 
(adequacy). A simulation tool that is responsive 
to current requirements, however, must be de-
veloped respecting both these expectations. 
This can only happen when the different fig-
ures, able to drive the development of BPSts, 
will share the same aims, as stated in (Attia, et 
al 2012): “the typical uni-disciplinary design 
process where the architect and engineers work 
in separate islands and with no performance 
goals cannot achieve the new millennium objec-
tives”. 
Therefore, it is important to pursue “operability” 
requirements, without producing adverse ef-
fects in terms of adequacy of the obtained re-
sults. The answer to these requirements can be 
neither to simplify the underlying simulation 
model regardless of its real complexity, nor to 
over-simplify the use of a complex model by 
deceiving its properties. To understand how 
these complexity reduction mechanisms should 
be combined with the accuracy of the simula-
tion results, while maintaining a sufficient com-
pleteness, it is better to take a step back and 
ask ourselves what confidence we have with 
the degree of accuracy of the calculations per-
formed by the different BPSts available on the 
market. 

2.2 Accuracy Assessment 
In recent years, a renewed attention has been 
paid to the assessment of the degree of error 
reached by the estimates gained through BPSts. 
In particular, it has been given greater atten-
tion to the errors made in the assessment of 
zone air temperatures, or air nodes tempera-
tures. In the past, the main interest was mainly 
fixed upon the assessment of integral errors in 
terms of energy use, while little was said about 
the estimation of the temperatures reached by 
the different components of the building sys-
tem. If we recognize the same importance to 
energy consumes and thermal comfort re-
quirements, a correct evaluation of the tem-
poral profiles of the temperatures reached at 
the inner surface of the walls and by air vol-
umes becomes a matter of principal im-
portance. 
In this regard, it is central to underline one of 
the results obtained during the definition of a 
methodology for the empirical validation of 
BPSts, developed as part of Annex 58 of the 
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IEA Project ECB “Reliable Building Energy Per-
formance Characterisation Based on Full Scale 
Dynamic Measurements” [1]. The results ob-
tained from a first sample application of this 
methodology (Strachan et al 2015), have, in 
fact, revealed that none of the most popular 
BPSts has produced results that excel in terms 
of accuracy, in all the metrics used, compared 
to the others. 
First, it should be pointed out how important is 
the definition of a set of different metrics by 
which to evaluate the accuracy of the calcula-
tion and of a set of variables, of different na-
ture, temperatures and flows, to which apply 
each of the previously defined metrics, to un-
derstand the different distribution of the errors 
made in the evaluation of a variable. The IEA 
Annex 58 validation methodology has identified 
two “significant indexes” upon which assessing 
the accuracy achieved in the estimate of the 
different variables of interest (Strachan et al 
2015), i.e.: 
- a “magnitude fit” index; 
- a “shape fit” index, or level of correspond-

ence in the shape of the profile assumed by 
the considered variable. 

The first index, of “magnitude fit”, was defined 
as the absolute average difference between 
measurement and prediction gained for each 
variable of interest, for each experimental peri-
od. The second index, of “shape fit”, was given 
by Spearman’s rank correlation coefficient 
(Kendall and Gibbons 1990) between predic-
tions and measurements of the same variables. 
These two metrics were applied to air node 
temperatures and to the power supplied by the 
heating system. 
To these metrics and variables, however, it may 
be useful to add some more assessments. For 
example, the set of variables, to which apply 
the different metrics, could be extended to the 
inside surface temperature of the walls of the 
different thermal zones, while the applied met-
rics may include other assessments practical for 
understanding the level of matching of the 
shape of the profile or “shape fit” assumed by 
each variable. In fact, the coefficient of Spear-
man is a mean value index, while it might be 
useful to have information relative to the time 
lag eventually detected on the occurrence of 
peak values in predicted and measured variable 
or relative to the estimation error of these peak 
values, which was one of the metrics used in 

some previous methodology, such as the 
ASHRAE Standard 140-2011 (ASHRAE, 2011). 
Even this example of application of the pro-
posed validation methodology showed signifi-
cant differences in the evaluation of air nodes 
temperatures obtained from different models 
and tools and has confirmed the importance of 
the identification of the metrics and methodolo-
gy to be used for evaluating the accuracy of 
currently available BPSts to enable the compari-
son of the results gained by them. Often, in 
fact, the different BPSts are tested by following 
different validations methodologies and/or the 
obtained results are summarized only partially, 
making the comparison between the different 
tools more complex. 

2.3. Evolutionary growth 
A BPSt, by describing complex and evolving 
systems, must be subjected to a continuous 
development/update. The chosen development 
model could determine its success or disposal, 
as described by (Fischer, et al 1994). Fischer 
has identified as the unique model applicable to 
such systems (highly complex and constantly 
evolving) the SER model: “Seeding, Evolution-
ary growth, and Reseeding”, showed in Figure 
1. This model relies on a perpetual cyclic pro-
cess where periods of not planned evolutionary 
activity, in the hands of the users, are followed 
by scheduled periods of (re)structuring and 
capitalizing on the work previously done, with 
the help of IT developers. 
BPSts could therefore benefit from a structure 
that allows them to evolve with their users’ ex-
perience, enabling them to adapt and respond 
to unknown requirements during the early 
stages of development. This development mod-
el is in fact based on the belief that human-
computer interaction will evolve from “easy to 
use” (which does not mean that skills related to 
the understanding of the inherent complexity of 
the tool are not necessary) to “easy to develop” 
(Fischer et al., 2004). Examples of End User 
Development (EUD) are represented by the 
ability to record or write macros in Visual Basic 
within a spreadsheet or the ability to use a par-
ticular language for the configuration of a CAD 
drawing. The importance of facilitating such 
Evolutionary Growth is, as a matter of fact, one 
of the drivers/catalysts in the use of general-
purpose  programs. These  kinds of  tools  have  
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Figure 1 – Seeding, Evolutionary growth, and Reseed-
ing development model for complex and evolving sys-
tems. 

have been in fact created to facilitate the defi-
nition of mathematical models not yet imple-
mented in available BPSts. 
It will be necessary, of course, to implement 
levels of “user-customization” characterized by 
different development difficulties (simple, ad-
vanced and expert) and, for each level, the 
most suitable tool should be identified and im-
plemented. Therefore, the user should not be-
come an IT “expert”, regardless of the level of 
“personalization” desired, however, if this de-
sire for modification is high, more computer 
skills may be needed. 
An important activity that requires no computer 
skills could be the enrichment of the database 
of “components” available for the simulation. 
This enrichment could be performed by enter-
ing data, relative to product available on the 
market, through web pages, according to the 
exchange format which is more adequate to be 
used by dynamic simulation codes. 
An activity that would call for greater commit-
ment is that of implementing new models or 
modifying existing ones. In these cases, to al-
low a good cooperation between different de-
velopers separated in space and/or in time, it 
would be of fundamental importance to imple-
ment a clear code structure, to define useful 
development rules, to clearly present the re-
sults achieved and to continuously manage and 
document the code developed. 
This type of evolution, from time to time, has 
been considered sufficient to determine the 
success of a software against another. Such a 
type of evolution, however, leads to the crea-
tion of different parts of code, created by dif-
ferent mindsets, sometimes to tackle contingent 
problems, which sometimes are not properly 
coordinated or harmonized or are in partial 
overlap with each other’s. Such an “heteroge-
neously” evolved system could benefit greatly 
from a better structuring, generalization and 

formalization. This Reseeding phase should 
push IT developers to collaborate again with 
the experts of the application sector of the 
software and would allow the re-
implementation to benefit from new languages, 
frameworks and IT technologies previously not 
available. 

3. EXISTING TYPES OF BPSt 

In the web page “Building Energy Software 
Tools” [2], until recently managed by the US 
Department of Energy and devoted to briefly 
present currently available BPSts, by selecting 
the filter “Whole-building Energy Simulation”, 
we will get a list of 42 software, ranging from 
more or less complex calculation engines 
(among the best known: EnergyPlus, ESP-r, 
TRNSYS, IDA/ICE and the Modelica Buildings 
library) to graphical user interfaces designed for 
supporting the use of such calculation engines 
(among the best known: DesignBuilder and 
Openstudio). In some cases, it is not immediate 
to understand if you are watching an interface 
to a calculation engine (and in this case, which 
calculation engine) or a calculation engine. 
Sometimes, even though not always, together 
with the tool are distributed also the input files 
used during the validation process of the BPST 
and the documentation summarizing all or parts 
of its results. These two aspects are indeed of 
fundamental importance to compare the differ-
ent BPSts in term of both “Operability” and “Ac-
curacy”. 
Certain of those programs, such as IDA ICE and 
the Buildings Modelica library, are born with the 
idea of exploiting languages more close to 
those of the scope of the application of BPSts, 
along with a general-purpose computing en-
gine, to make the evolutionary growth phase 
more practical by a user non expert in infor-
mation technology and/or numerical analysis. 
Currently available tools can be therefore 
grouped in two main families: 
- special-purpose programs; 
- general-purpose programs. 

3.1. Special-purpose programs 
“Special-purpose programs” are programs writ-
ten in a computer language, like “C” or 
“FORTRAN”, with their relative evolutions, for 
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solving a well-defined problem. The develop-
ment of this kind of tools starts with the defini-
tion of a specific problem, characterized by a 
certain structure and nature. For this specific 
problem, an efficient numerical/computational 
solution is sought and implemented. This ap-
proach is eligible to achieve a good robustness 
of the implemented code and limits the risk of 
generating ill-defined problems, as long as the 
input data are reasonable. 
The specific nature of these programs do not 
preclude a modular structure, which is more or 
less favorable to the inclusion of new pieces of 
code. TRNSYS, for example, allow to easily in-
clude new implementations which are relative 
to technical-systems parts, while it is not the 
same for changing/expanding models which are 
relative to the building. This greater or lesser 
ease in the management/enrichment of the 
code is sometimes linked to commercial issues, 
although more often it is due to the structure 
with which the computational model has been 
implemented for a particular system, such that 
of the building. In some cases, in fact, such as 
ESP-r, the computational model that imple-
ments the mathematical model for the ex-
change of mass and energy within a building is 
implemented in a single matrix, which is then 
partitioned in order to reduce the calculation 
time. This matrix, in fact, can reach significant 
size, leading to long calculation times for its in-
version. Numerical analysis, suggests methods 
for partitioning sparse matrices aimed at reduc-
ing required computation time, but to add or 
change parts of the mathematical model repre-
sented computationally by this matrix, it is nec-
essary to understand its structure and it might 
be needed to consider new partition routines, if 
the latter ones had not been implemented fol-
lowing an appropriate “a priori” logic. Another 
approach used to reduce problems of handling 
such large matrixes, had been to introduce 
“generic” addenda into the equations of the 
mathematical models implemented inside these 
matrixes, in order to allow, through their use, 
to introduce aspects not previously considered. 

3.2. General-purpose programs 
General-purpose programs are created to solve 
any kind of problem which the user might de-
cide to describe in it. The user of such a type of 
software, to simulate a given system must, in 
general, define a physical model, then its 

mathematical model, and then introduce it in 
the program, through its specific programming 
language. For the solution of this model, the 
program exploits the numerical libraries includ-
ed in it, but which may not always be adequate 
to the needs. For example, if the mathematical 
model is described by a differential equation of 
partial derivatives and numerical libraries avail-
able to the program, as in the case of Modelica 
and IDA ICE, are only capable of solving ordi-
nary differential equations, the user must 
change the mathematical model which he in-
tends to simulate in order to revert to what is 
resolvable by the general-purpose program that 
he is using. As well as forcing the user to build 
a mathematical model of the system to be sim-
ulated, which involves specific skills not owned 
by all potential users, such programs often re-
quire the knowledge of a proprietary program-
ming language, which is functional to the for-
mal description of equations involved in the 
system, more that to the implementation of 
numerical algorithms. 
The purpose of this type of programs, charac-
terized by high extensibility and flexibility within 
the domain of operation, is to limit the respon-
sibilities assigned to the developer to the model 
description, by delegating their numerical solu-
tion to the libraries implemented in the tool. 
Among the general-purpose programs must be 
cited Dymola, OpenModelica and IDA ICE. 
Dymola is the most used commercial front-end 
for Modelica, while OpenModelica is its free al-
ternative. Modelica is a declarative language for 
object-oriented modeling. The Neutral Model 
Format (NMF) is the language, introduced in 
the late ‘80s by Per Sahlin (Sahlin and Sowell, 
1989), upon which was developed IDA ICE and 
which was the predecessor of the Modelica lan-
guage. While IDA-ICE is born for the simulation 
of building performance and therefore is native-
ly equipped with a library of specific component 
models recalled transparently by the user 
through a graphical interface (which therefore 
can avoid building the various mathematical 
models through programming language), Mod-
elica, which maintains its general purpose fea-
ture, supports this objective through the "Build-
ings Modelica library", an open source library 
developed for this purpose. However, from the 
developer's point of view (and not from that of 
BPSt users) there are some cases, such as the 
calculation of the form factors between com-
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plex geometries, for which the biggest problem 
does not lie in writing of one or more mathe-
matical equations, but in the optimized man-
agement of the numerical calculation process. 
In these cases, the proprietary programming 
language, aimed at the formal description of 
equations, is less efficient and functional than a 
classic programming language, such as C ++, C 
#, Fortran, etc. 
Some disadvantages of the approach used in 
these type of programs are: lack of computa-
tional efficiency, limitations in the solution of 
mathematical systems whose numerical transla-
tion is not already included in the numerical li-
braries available to the program and difficulties 
in understanding error messages generated by 
the program during the simulation, because of 
the symbolic manipulation applied to the sys-
tem of equations. 
Another example of general-purpose programs 
includes the use of Matlab, coupled to Simulink 
for the definition of blocks meant to simulate 
the building system. 
In this case Simulink offers its drag and drop 
functionality while Matlab an extensive library 
of numerical and statistical methods. However, 
some drawbacks of this approach have been 
pointed out by (Zupančič and Sodja, 2008), 
such as: 
- It imposes the development of procedural 

models;  
- It assumes that a system can be decom-

posed into block diagram structures with 
causal interactions; 

- It is a “signal-oriented” environment, that 
often leads to algebraic loops whose numeri-
cal resolution might be risky; 

- Developing something in this context implies 
the cost of the Matlab-Simulink license. 

3.2. Co-simulation 
The possibility to couple special-purpose codes 
between each other can be a solution when the 
dimension of the tool, in term of lines of code, 
poses difficulties in the maintenance and 
growth of the tool. 
An example of the implementation of this cou-
pling is represented by the development of a 
new group of elements within EnergyPlus, such 
as the “ExternalInterface”. To implement such 
coupling, whose management is not yet com-
pletely transparent to the user, changes in the 
EnergyPlus code have been required and, in 

some cases, a manager is required for the ex-
change of information between involved 
agents. This manager, an implementation of 
which is the Building Controls Virtual Test Bed 
(BCVTB), can be avoided when using the Func-
tional Mock-up Units Import (FMU) option in 
EnergyPlus. In both cases, this coupling is 
meant to assign externally calculated values to 
those variables of a monolithic software, for 
which the external interface has been expressly 
developed. At the moment, the use of this op-
portunity has been mainly related to “loosely 
coupled” problems, i.e. problems for which it 
was not “strictly necessary” to perform an itera-
tive interaction between the various actors. In 
particular, in EnergyPlus the external interface 
has been defined, up to now, for three types of 
input, namely: 
- ExternalInterface:Schedule, or ExternalInter-

face:FunctionalMockupUnitImpot:To:Schedule 
- ExternalInterface:Actuator or ExternalInter-

face:FunctionalMockupUnitImport:To:Actuator 
- ExternalInterface:Variable or ExternalInter-

face:FunctionalMockupUnitImport:To:Variable. 
Other external interfaces have been defined to 
expose to the other actors the output of Ener-
gyPlus calculations, such as the: 
- Output:Variable; 
- EnergyManagementSystem: OutputVariable; 
 ExternalInter-

face:FunctionalMockupUnitImport:From:Vari
able 

While the function of the first two input inter-
faces is easy to understand and their nature of 
“controller-actuator” can be recognized, the last 
might seem more general, but it actually has a 
feature similar to the EnergyManagement-
System:GlobalVariable (an internal object of 
EnergyPlus for plant management), i.e. to pass 
values to variables of a specific EnergyPlus in-
ternal modeling language for the definition of 
control and management systems, called Ener-
gy Runtime language (Erl). The difference be-
tween this approach and that managed inter-
nally by EnergyPlus, is that in this case, the 
numerical value passed from the external inter-
face to EnergyPlus at the beginning of each 
time step for a thermal zone, remains constant 
within this time step, not allowing the change 
due to iterations performed within the same 
time step. A strategy of this kind could be inef-
ficient, in some cases, both in computational 
and implementative terms. The development of 
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a special-purpose software that has been im-
plemented according to an “enhanced modu-
larity” (Mazzarella and Pasini, 2009) might be 
more efficient than such a coupling, thanks to 
some facilities offered by the structure of ob-
ject-oriented programming. Thanks to object-
oriented paradigms, the developer can easily 
locate the piece of code to be replaced and/or 
extended and modify it, by maintaining its “rel-
ative position” with respect to other calculation 
procedures, by inheriting already implemented 
functionalities that might be useful for the new 
implementation. 
Another concern, when coupling different tools, 
regards the risk of an inappropriate use of 
models born with specific assumptions, perhaps 
forgotten over the years. Often, in fact, some 
of these programs have evolved over many 
years and contains solutions considered suffi-
ciently satisfactory for a given historical mo-
ment or which represented the only possibility 
for the time. For example, today EnergyPlus re-
quires a time step of calculation of maximum 3 
minutes when the finite difference method is 
selected for the computation of heat exchange 
by conduction within the walls. This short time 
step does not blend well with models that do 
not consider the response time of the simulated 
systems and, more generally, with system-
related stationary models. A stationary model 
for the simulation of HVAC systems was in fact 
well suited until the time step of discretization 
was of the order of one hour. To avoid such 
coupling problems, the tool should generate er-
ror messages when the time step is not suffi-
ciently bigger than the characteristic time of 
those models simulated with steady state solu-
tions. The coupling of different tools must 
therefore be pursued only after a careful analy-
sis of the tools to be joined has been per-
formed. 
The Reseeding phase would be functional, in 
such cases, to rationalize what has been devel-
oped over a long period, by verifying appropri-
ateness and consistency of the different parts 
of the code and by combining those parts in the 
most efficient way. 

CONCLUSION 

When choosing among currently available BPSts 
to design buildings and/or larger systems, to be 

as efficient as possible and to be able to profi-
ciently exploit energies from renewable 
sources, it is necessary to consider the possibili-
ties offered by the different BPSts in terms of 
accuracy and completeness, while taking into 
account ease of use and support facilities for 
the design process, eventually included in the 
tool. 
Unfortunately, the assessment of the accuracy 
of the different tools is still a difficult process. 
As a matter of fact, currently available BPSts do 
not give the same results, especially when es-
timating variables considered of secondary im-
portance in the past. Besides, not always, all 
the supports useful for comparing their results 
accuracy are given together with the tool, such 
as the input files for the software, which im-
plement the models outlined in the validation 
procedure and a complete report containing all 
the indexes defined in the validation methodol-
ogy, applied to all the identified variables. Cer-
tainly, the difference between simulation and 
operation is partially due by the randomness of 
some of the drivers of the simulation, which 
cannot be represented by a single scenario, and 
the knowledge of the accuracy achieved in each 
scenario is the starting point to be able to con-
sider many of them, in order to evaluate the 
performance of the designed system in differ-
ent circumstances. 
Given the difficulty of pursuing simultaneously 
objectives potentially conflictual, such as “oper-
ability” and “adequacy”, the efforts spent in de-
veloping BPSts have been torn apart, resulting 
in the distribution on the market of a number of 
tools, with very different features. 
New general-purpose programs have tried to 
give an answer to the need of rapid model de-
velopment and/or coupling of existing models 
developed for the simulation of parts of the sys-
tem under enquiry, while many of the new im-
plementations of special-purpose software have 
been focused on incrementing ease of use, 
sometimes by reducing the complexity of the 
simulated system. Co-simulation has tried to 
address the difficulties involved in modifying 
the oldest special-purpose programs. However, 
not always what can be coupled, should be 
coupled or is efficiently coupled from a compu-
tational and implementative point of view, 
therefore caution is advised in using such solu-
tions. 
In conclusion it must be put in evidence that for 
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a tool to be easily maintainable and extensible, 
the choice is not compulsory among general-
purpose or special-purpose solutions, but lies in 
the implementation of an architecture for the 
code, which is characterized by enough modu-
larity. It is important also to remember, that no 
BPSt can compensate for a lack of user exper-
tise in creating a proper representative model 
of the system at enquiry. 
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