MANUALE D'AUSILIO ALLA PROGETTAZIONE TERMOTECNICA

IDRONICA

Cultura e Tecnica per Energia Uomo e Ambiente

© 2015 AiCARR via Melchiorre Gioia, 168 - 20125 Milano Tel. 02.6747.9270 - Fax 6747.9270 www.aicarr.org Prima edizione 2015

I diritti di traduzione, di memorizzazione elettronica, di riproduzione e di adattamento totale o parziale, con qualsiasi mezzo (microfilm, copie fotostatiche compresi), sono riservati per tutti i Paesi.

Nessuna parte di questo libro può essere riprodotta con sistemi elettronici, meccanici o altro senza l'autorizzazione scritta di AiCARR.

Si ringraziano le seguenti aziende per la gentile concessione dell'uso delle immagini e grafici presenti all'interno del volume:

CALEFFI Spa; CGT Spa; FROLING Srl; HOVAL Srl; JOHNSON CONTROLS SYSTEMS AND SERVICE ITALY Srl; KLOBEN Sas; VIESSMANN Srl

Finito di stampare nel mese di Settembre 2015

Prodotto interamente realizzato in Italia

Codice ISBN: XXXXXXX

IDRONICA

PREFAZIONE

Ho sempre ritenuto che una delle principali lacune culturali presente nell'ambito della progettazione degli impianti HVAC e idraulici in genere sia quella relativa a una approfondita e consapevole conoscenza dell'idronica, da intendersi non tanto come conoscenza dei criteri di dimensionamento dei circuiti idraulici, quanto piuttosto come conoscenza dei criteri relativi alla loro scelta e impostazione progettuale in relazione alle caratteristiche prestazionali e alle esigenze funzionali delle macchine, delle apparecchiature e dei terminali che tali reti sono chiamate a collegare e a rendere fra loro funzionanti nel migliore dei modi.

Solamente una mirata progettazione idronica delle reti termofluidiche garantisce, infatti, il corretto funzionamento degli impianti, consentendo ai sistemi di produzione energetica di operare senza rischio di avarie e nelle migliori condizioni di resa e ai sistemi di utenza di fornire le prestazioni attese in qualsiasi situazione di esercizio.

Alla luce di ciò, quando sono stato chiamato dal Past President Michele Vio a ricoprire per il triennio 2011-2013 il ruolo di Presidente della Commissione Comitati Tecnici, ho ritenuto che fra le molteplici iniziative di approfondimento e divulgazione culturale che la Commissione da me presieduta avrebbe dovuto cercare di portare a termine fosse molto importante inserire anche quella di redigere un "Manuale di idronica" che avesse lo scopo di illustrare in modo chiaro e completo non soltanto i principi dell'idronica, ma anche e soprattutto i suoi aspetti applicativi nell'ambito delle varie tipologie impiantistiche. In altre parole un manuale che, partendo dall'analisi delle molteplici problematiche di circuitazione idronica, caratteristiche di ciascuna macchina o apparecchiatura, spiegasse ai progettisti i motivi in base ai quali devono essere disegnate le relative reti idroniche di allacciamento e fomisse loro le corrette soluzioni progettuali sotto forma di schemi funzionali di principio.

Mi sono pertanto rivolto a un gruppo di amici che sapevo da sempre essere attenti cultori di questa specifica tematica, chiedendo loro di cimentarsi in quest'impresa. Eravamo agli inizi del 2011 e ricordo ancora bene che cosa disse con tutta la sua autorevolezza Alberto Cavallini nel corso della prima riunione: "è una sfida importante e faticosa che vale la pena di affrontare, a una condizione però: che ci si impegni tutti in prima persona". L'armiamoci e partite non era tollerato né tollerabile e così è stato.

Ci sono voluti più di quattro anni per pubblicare il manuale, non tanto perché i vari Autori non avessero le idee chiare su che cosa scrivere, quanto piuttosto perché trovassero il tempo di farlo, ma ora sfogliandolo non si può non essere tutti orgogliosi del lavoro svolto e più che convinti che valeva assolutamente la pena spendere energie in tal senso.

Quello che è stato prodotto è un testo di grande spessore e importanza, unico nel suo genere non soltantoa livello nazionale, ma anche internazionale. Un testo che tutti gli addetti ai lavori, e in particolare i progettisti, dovrebbero conoscere approfonditamente e tenere a portata di mano per farne quell'uso quotidiano per cui esso è stato volutamente e specificatamente pensato. Un testo da raccomandare e far subito imparare ai giovani che ambiscono a diventare progettisti di impianti meccanici.

E per concludere i ringraziamenti a nome di AiCARR e miei personali.

In primo luogo ad Adileno Boeche per la professionalità, l'impegno, la determinazione e, in molti casi, la caparbietà con cui ha saputo svolgere il faticoso e ingrato compito del Coordinatore. E poi a tutti gli Autori e al Revisore per il bellissimo omaggio che essi fanno con questo volume all'Associazione, un dono prezioso non solamente in termini di sapere e conoscenza, che già di per sé non sarebbe poca cosa, ma di impegno e tempo sottratti alla famiglia, al lavoro e allo svago.

Matteo Bo Presidente Commissione Comitati Tecnici AiCARR Triennio 2011-2013

Torino, Luglio 2015

IDRONICA vii

PRESENTAZIONE

Quando Alberto Cavallini, nell'ormai lontana primavera del 2011, mi parlò dell'iniziativa di Matteo Bo, a quel tempo presidente della Commissione Comitati Tecnici, di redigere in ambito AiCARR un manuale di idronica e mi propose di assumermi il ruolo di coordinare il gruppo di lavoro (allora non ancora individuato) che avrebbe dovuto scrivere il manuale, come avrei potuto rifiutare? E questo innanzitutto per il rapporto che mi legava (e mi lega tuttora) ad Alberto, che conoscevo da oltre quarant'anni, che era stato mio giovane insegnante durante gli studi universitari e poi mio correlatore di laurea, nonché, ora e da tempo, amico e socio nella società di ingegneria all'interno della quale entrambi operiamo; secondariamente, per l'interesse che ho sempre nutrito, e che era ben noto ad Alberto e a Matteo, per questa branca fondamentale della termotecnica che è l'idronica e che, nella mia lunga esperienza professionale, ho purtroppo constatato essere quasi sconosciuta ai più, anche per scarsità di letteratura tecnica specifica. Mi affascinò subito l'idea che il manuale prospettato potesse colmare questa grande lacuna, dal momento che, a quanto constava a tutti noi addetti ai lavori, mancava sul mercato a livello non solo nazionale, ma anche europeo, un'opera sufficientemente completa ed esaustiva su questo argomento.

Il gruppo di lavoro venne rapidamente costituito, coinvolgendo professionisti che, secondo Matteo, Alberto ed io, potevano essere da un canto interessati e, d'altro canto, assolutamente competenti quanto meno in alcuni settori specifici dell'idronica: la compagine fu quindi formata, oltre che da noi tre, da:

- l'ing. M. Stefano Venco (libero professionista)
- l'ing. Michele Vio (libero professionista, allora Presidente AiCARR)
- l'ing. Davide Elardo (società Belimo Italia)
- l'ing. Luca Alberto Piterà (segretario tecnico AiCARR)

ed anche da alcuni tecnici sia di una nota casa costruttrice di caldaie che di un altrettanto noto costruttore di pompe. Tutti costoro, peraltro, si defilarono abbastanza presto, per motivi dovuti ad altri impegni o anche di tipo diverso.

Il primo lavoro fu naturalmente quello di pensare un complesso organico e logico di argomenti da trattare e quindi di scrivere un primo indice degli argomenti stessi, ovvero dei capitoli, attribuendo poi a ciascun capitolo uno o più autori fra quelli costituenti il gruppo.

L'impresa cui ci accingevamo si prospettò subito complessa e lunga, anche e soprattutto per la difficoltà di coordinare personalità così diverse (anche come esperienze professionali), impegnate e operanti in luoghi spesso lontani fra loro, al fine di ottenere un risultato il più possibile completo e omogeneo come impostazione formale, livello di contenuti, grafica e così via.

Spero (ma saranno i lettori a valutarlo) che, con l'impegno e gli sforzi di tutti, ci siamo riusciti.

L'impostazione e i contenuti del volume possono essere riassunti come descritto nel seguito.

- Cap. 1: Principi fondamentali dell'idronica (A. Boeche). Si richiamano qui il Primo Principio della Termodinamica, il Teorema di Bernoulli ed i fondamenti di moto dei fluidi, illustrandone le principali applicazioni ai circuiti idronici aperti e chiusi.
- Cap. 2: Le pompe (A. Cavallini). L'argomento delle pompe centrifughe (e non solo) è trattato in modo particolarmente approfondito, partendo dai concetti basilari dei triangoli delle velocità e sviluppando con rigore scientifico i temi delle perdite energetiche, dei rendimenti, delle potenze, delle curve caratteristiche, delle pompe a velocità variabile e così via
- Cap. 3: L'idronica di base dei circuiti chiusi (A. Boeche). Vengono illustrati gli schemi elementari e via via più complessi di
 circuiti primari e secondari, a spillamento e iniezione, a portata costante e variabile, con i relativi bilanci energetici
 (una serie di schede esemplificative risulta di grande comodità); viene infine sviluppato il tema degli edifici di grande
 altezza.
- Cap. 4: L'idronica di base dei circuiti aperti (A. Boeche). Strutturato come il precedente, questo capitolo riguarda i circuiti
 aperti idrosanitari (compresa la produzione di acqua calda sanitaria) e antincendio, i circuiti a servizio delle torri
 evaporative e quelli per gli edifici di grande altezza.
- Cap. 5: Corpi scaldanti e raffrescanti (M. Vio). Dopo alcuni richiami di trasmissione del calore vengono presi in esame i vari tipi di corpi scaldanti e raffreddanti, approfondendone le caratteristiche funzionali e le relazioni fra emissione termica, portata d'acqua e temperature di lavoro.
- Cap. 6: Le valvole di regolazione (D. Elardo). Il capitolo illustra le valvole di regolazione, le loro caratteristiche, il loro
 comportamento e i concetti ad esse correlati.

viii IDRONICA

 Cap. 7: Circuiti regolati con valvole a due o tre vie (D. Elardo). Vengono qui considerati i circuiti idronici dotati di valvole di regolazione a tre vie (ovvero a portata sostanzialmente costante) e a due vie (a portata variabile), scendendo nei particolari del loro funzionamento e della relativa ottimizzazione.

- Cap. 8: Le problematiche idroniche dei generatori di calore a combustione (M. Bo, M. Vio). Il capitolo affronta le principali (e
 non solo queste) questioni idroniche riguardanti le caldale (a condensazione e non) ed i cogeneratori, fornendo
 preziose indicazioni per i progettisti.
- Cap. 9: Le problematiche idroniche degli impianti solari termici (L. A. Piterà). L'idronica di questi impianti, che spesso viene trascurata, è qui illustrata ed approfondita in modo chiaro e completo, mettendo anche in evidenza i problemi connessi a sovratemperature, rischi di gelo, ecc.
- Cap. 10: Le problematiche idroniche dei refrigeratori d'acqua e pompe di calore (M. Vio). Analogamente al caso dei generatori di calore, vengono qui presi in considerazione, sotto il profilo idronico, i gruppi refrigeratori e le pompe di calore, con i relativi possibili schemi di collegamento e di distribuzione alle utenze, sviluppando gli argomenti legati alle portate d'acqua, alle temperature di lavoro, al contenuto d'acqua degli impianti, ai serbatoi inerziali e così via. Vengono illustrati anche i principi di funzionamento delle "banche del ghiaccio".
- Cap. 11: Gli impianti ad anello d'acqua (M. S. Venco). Si tratta di impianti che pochi tecnici conoscono, ma che possono trovare un vasto campo di applicazioni, consentendo, se ben progettati, dei grandi risparmi energetici. E Stefano Venco li conosce bene!
- Cap. 12: Raccolta di schemi di principio di centrali termiche e frigorifere e d'impianti ad anello d'acqua (M. Bo, A. Boeche, A. Cavallini, L. A. Piterà, M. S. Venco, M. Vio). Si tratta di un'ampia raccolta di schemi funzionali di centrali, dei quali vengono illustrati e commentati il funzionamento e i vantaggi, ma anche gli elementi di criticità.

Completa il volume un'ampia appendice (a cura di M. Bo, A. Boeche, L. A. Piterà) comprendente dati tecnici, tabelle di calcolo, e così via.

E' davvero da sottolineare come l'opera, al di là dei contenuti concettuali e teorici, comprenda soprattutto il vasto "know-how" tecnico di tutti gli autori, di valore inestimabile in quanto frutto di anni di professione ad alto livello.

A tutti gli autori pertanto (nonostante i sacrifici e le arrabbiature ai quali mi hanno costretto e i grattacapi che mi hanno dato come coordinatore del gruppo di lavoro) vanno i miei vivi complimenti e sinceri ringraziamenti per l'impegno profuso e il risultato finale raggiunto.

Un "grazie" particolare desidero infine rivolgere a Mara Portoso, che con encomiabile spirito di sacrificio e abnegazione ha accettato l'oneroso ruolo di revisore finale della ragguardevole mole di materiale prodotto dai vari autori.

Adileno Boeche Coordinatore e responsabile del Gruppo di Lavoro

Padova, Luglio 2015

INDICE

CAPITO	OLO 1 - PRINCIPI FONDAMENTALI DELL'IDRONICA	1
1.1 D	DEFINIZIONI E CONCETTI	1
1.2 IL	L PRINCIPIO DI CONTINUITÀ	2
1.3 IL	L PRIMO PRINCIPIO DELLA TERMODINAMICA	3
1.4 IL	L TEOREMA DI BERNOULLI	5
1.5 C	CIRCUITI IDRONICI ELEMENTARI APERTI E CHIUSI	7
1.6 II	L MOTO "REALE" DELL'ACQUA NELLE TUBAZIONI	11
1.6.1	L Generalità	11
1.6.2	2 Il moto laminare	11
1.6.3	3 Il moto turbolento	12
1.7 Gl	LI ATTRITI NEI CIRCUITI IDRONICI	13
1.7.1	1 Generalità sugli attriti	13
1.7.2	2 Le perdite di carico distribuite; il fattore di attrito	13
1.7.3	3 Le perdite di carico concentrate (o accidentali)	16
1.8 C	CURVE CARATTERISTICHE DEI CIRCUITI IDRONICI; CIRCUITI IN PARALLELO E IN SERIE	16
1.9 C	CENNI SULLE CURVE CARATTERISTICHE DELLE POMPE CENTRIFUGHE	20
1.10 IL	L PUNTO DI FUNZIONAMENTO NEL SISTEMA CIRCUITO-POMPA	21
1.10.	1 Concetti fondamentali	21
1.10.	2 Circuiti a caratteristica variabile	22
1.10.	3 Pompe a velocità variabile	22
1.10.	4 Pompe in parallelo	23
1.10.	5 Pompe in serie	24

CAF	OTI	LO 2 - LE POMPE	26
2.1	GE	ENERALITÀ	26
2.2	LE	POMPE VOLUMETRICHE	27
2.3	LE	POMPE ROTODINAMICHE	32
2.3	3.10	Generalità	32
2.4	LE	POMPE CENTRIFUGHE NELLE APPLICAZIONI HVAC	35
2.4	4.1	Le più comuni soluzioni costruttive	35
2.4	4.2	La caratteristica ideale (euleriana) di una girante centrifuga	38
2.4	4.3	La caratteristica reale di una pompa centrifuga. Rendimenti	40
2.4	4.4	Le leggi di affinità per le pompe centrifughe	46
2.4	4.5	Diagrammi a mosaico	46
2.4	4.6	Cavitazione. NPSH	47
2.4	4.7	Sulle condizioni operative delle pompe centrifughe	50
2.4	4.8	Pompaggio a portata variabile	52
2.4	4.9	Rendimento delle pompe centrifughe	62
2.4	4.10	Regolamenti europei sulla ecosostenibilità	65
2.4	4.11	Aspirazione da serbatoi aperti	69
2.4	4.12	Installazione delle pompe centrifughe	75
CAF	OTI	LO 3 - L'IDRONICA DI BASE DEI CIRCUITI CHIUSI	78
3.1	ΑN	NDAMENTO DELLE PRESSIONI ENTRO UN CIRCUITO CHIUSO	78
3.	1.1	Circuito con pompa inattiva	78
3.	1.2	Circuito con pompa attiva	79
3.2	IL I	BILANCIAMENTO DEI CIRCUITI IDRONICI. FONDAMENTI	80
3.3	CIF	RCUITI IDRONICI ELEMENTARI	82
3.4	ĽЩ	DRONICA NEGLI EDIFICI DI GRANDE ALTEZZA	138
3.5	IL :	SEPARATORE IDRAULICO E L'ACCUMULO INERZIALE	140
3.6	ĽA	ACCUMULO DI FREDDO	142
CAF	OTI	LO 4 - L'IDRONICA DI BASE DEI CIRCUITI APERTI	144
4.1	IN	TRODUZIONE	144
12	рг	ETI IDDOCANITADIE	1//

4.2.1	Generalità	144
4.2.2	Le reti di distribuzione dell'acqua fredda sanitaria	144
4.2.3	La produzione e distribuzione dell'acqua calda sanitaria (ACS)	146
4.2.4	La questione "legionella"	148
4.2.5	Il caso degli edifici di grande altezza	150
4.3 R	ETI IDRICHE ANTINCENDIO	154
4.3.1	Generalità	154
4.3.2	Il caso degli edifici di grande altezza	156
4.4 C	IRCUITI D'ACQUA DI RAFFREDDAMENTO CON TORRI EVAPORATIVE	157
4.4.1	Generalità	157
4.5 SI	ISTEMI IDRONICI CON ACCUMULO (GENERALMENTE DI FREDDO) A PELO LIBERO, A PRESSIONE	
ATMOS	FERICA	160
CAPITO	DLO 5 - CORPI SCALDANTI E RAFFRESCANTI	163
5.1 IN	NTRODUZIONE	163
5.2 C	ENNI SULLA TRASMISSIONE DEL CALORE	163
5.2.1	Conduzione termica	163
5.2.	1.1 Parete piana	164
5.2.	1.2 Parete cilindrica	165
5.2.2	Convezione termica	165
5.2.	2.1 Convezione forzata	166
5.2.	2.2 Convezione naturale	167
5.2.3	Irraggiamento termico	169
5.2.	3.1 Influenza della temperatura delle pareti nello scambio termico per irraggiamento	171
5.2.4	Scambio termico globale	172
5.2.5	Cenni sugli scambiatori di calore	174
5.3 TIP	OLOGIE DEI TERMINALI D'IMPIANTO	177
5.3.1	Terminali a scambio prevalente per convezione naturale	177
5.3.2	Terminali a scambio per convezione forzata	177
5.3.3	Terminali a scambio prevalente per radiazione	177
5.3.4	Terminali a scambio misto	177
5.4 CRI	TERI DI ACCOPPIAMENTO DEI TERMINALI AI GENERATORI	178
5.4.1	Funzionamento in riscaldamento	178

5.4.	1.1	Accoppiamento con caldaie a condensazione	178
5.4.	1.2	Accoppiamento con pompe di calore a compressione	178
5.4.	1.3	Accoppiamento con pompe di calore a compressione a ciclo transcritico	181
5.4.	1.4	Accoppiamento con pompe di calore ad assorbimento	182
5.4.	1.5	Conclusioni sul funzionamento in riscaldamento	183
5.4.2	Fu	nzionamento in raffreddamento	184
5.5 RAI	DIATO	DRI	184
5.5.1	Ge	eneralità	184
5.5.2	Сι	rve prestazionali	185
5.5.3	Сс	nclusioni sui radiatori	187
5.6 SIS	TEM	RADIANTI	187
5.6.1	Ge	eneralità	188
5.6.	1.1	Potenza termica scambiata per irraggiamento	188
5.6.	1.2	Potenza termica scambiata per convezione	189
5.6.2	Fu	nzionamento in raffrescamento	190
5.6.	2.1	Sistema a soffitto	190
5.6.	2.2	Sistema a pavimento	193
5.6.3	Fu	nzionamento in riscaldamento	193
5.6.	3.1	Sistema a soffitto	194
5.6.	3.2	Sistema a pavimento	194
5.7 BAT	TER	IE DI SCAMBIO TERMICO	195
5.7.1	Sc	ambio termico nelle batterie: analisi semplificata	
5.7.2	Ge	eneralità	199
5.7.3	Fu	nzionamento in raffrescamento e deumidificazione	200
5.7.	3.1	Variazione della temperatura d'immissione dell'acqua	201
5.7.	3.2	Variazione di portata d'acqua	202
5.7.4	Fu	nzionamento in riscaldamento	203
5.8 TRA	WI F	REDDE	203
5.8.1	Fu	nzionamento in raffrescamento	204
582	Eu	nzionamento in riscaldamento	204

CAPITO	DLO 6 - VALVOLE DI REGOLAZIONE	205
6.1 GRA	ANDEZZE FONDAMENTALI	205
6.1.1	Curva caratteristica di regolazione	206
6.1.2	Caratteristiche principali delle valvole di regolazione	209
6.2 IL K	vs E IL METODO DI SELEZIONE DELLA VALVOLA	210
6.2.1	Definizione e misura del Kvs	210
6.2.2	Selezione della valvola a partire dal K _{vs}	211
6.3 TIPO	DLOGIE DI VALVOLE	212
6.4 DISI	POSITIVI DI CONTROLLO E COLLEGAMENTO ALLA REGOLAZIONE	216
6.4.1	Segnali elettrici di pilotaggio e comunicazione	216
6.4.2	Dispositivi aggiuntivi	218
CAPITO	DLO 7 - COMPORTAMENTI DEI CIRCUITI REGOLATI CON VALVOLE A 2 O A 3-VIE	219
7.1 AUT	ORITÀ DELLA VALVOLA DI REGOLAZIONE	219
7.2 POF	RTATA VARIABILE E PORTATA COSTANTE	220
7.3 GLI	SCHEMI BASE DEI CIRCUITI IDRONICI REGOLATI	223
7.4 IL BI	ILANCIAMENTO STATICO E DINAMICO DEI CIRCUITI	230
7.4.1	Bilanciamento statico nei circuiti a portata costante	230
7.4.2	Bilanciamento dinamico nei circuiti a portata variabile	232
7.4.3	Organi di bilanciamento	235
7.4.4	Valvole PICV (o autobilancianti) a bilanciamento statico/dinamico integrato	237
7.5 ESE	MPI NUMERICI DI SELEZIONE DELLA VALVOLA	239
7.5.1	Diagrammi di selezione delle valvole	240
7.5.2	Selezione delle valvole per impianti a portata costante	242
7.5.3	Selezione delle valvole per impianti a portata variabile	243
7.6 CRI	TICITÀ E ASPETTI ENERGETICI NELLA REGOLAZIONE DEI CIRCUITI	245
7.6.1	Importanza del funzionamento ai carichi parziali	245
7.6.2	Autorità, rapporto di regolazione e implicazioni sul Δt del circuito	246
7.6.3	Il bilanciamento e sua relazione con l'efficienza dell'impianto idronico	248
7.6.4	Trafilamento e problemi di ricircolazione fluido caldo-freddo	250
7.6.5	Risparmio energetico e valutazioni economiche	251

CAPITO	LO	8 - LE PROBLEMATICHE IDRONICHE DEI GENERATORI DI CALORE A COMBUSTIONE	.253
8.1 INTF	ROD	UZIONE	.253
8.2 LE C	CALE	DAIE PER PRODUZIONE DI ACQUA CALDA	.253
8.2.1	Pro	oblematiche di funzionamento in relazione al livello termico	.253
8.2.	1.1	La condensazione dei fumi nelle caldaie alimentate con idrocarburi	.253
8.2.1	1.2	I vantaggi della condensazione dei fumi nelle caldaie alimentate con idrocarburi	.257
8.2.1	1.3	Gli svantaggi della condensazione dei fumi nelle caldaie alimentate con idrocarburi	.259
8.2.	1.4	La condensazione dei fumi nelle caldaie alimentate con biomassa	.259
8.2.	1.5	Gli shock termici	.261
8.2.2	Tip	ologie di caldaie alimentate con idrocarburi	.261
8.2.2	2.1	Le caldaie standard	.262
8.2.2	2.2	Le caldaie a bassa temperatura	.263
8.2.2	2.3	Le caldaie a condensazione	.266
8.2.3	l si	stemi di controllo e regolazione dei moderni generatori di calore	.270
8.2.4	Ac	corgimenti idronici volti a evitare la condensazione	.271
8.2.4	4.1	Controllo della temperatura minima del ritorno realizzato direttamente tramite il sistema di regolazione della caldaia	ı 271
8.2.4	4.2	Aumento della temperatura del ritorno realizzato mediante pompa di miscelazione comunemente denominata	
		Pompa anticondensa	.272
8.2.4	4.3	Aumento della temperatura del ritorno realizzato mediante pompa di miscelazione più valvola miscelatrice a 3-vie	. 274
8.2.4	4.4	Aumento della temperatura del ritorno negli impianti con circuito primario di caldaia e circuiti secondari di utenza (in pianti con separatore idraulico) realizzato con valvola miscelatrice a 3-vie	
8.2.5	Ac	corgimenti idronici volti a massimizzare la condensazione	.276
8.2.6	Pro	oblematiche di funzionamento in relazione alla portata	.278
8.2.7	Dis	accoppiamento idronico mediante circuiti primari/secondari: il separatore idraulico	.279
8.2.7	7.1	L'impiego del separatore idraulico nel caso di impianti con caldaie a condensazione	.284
8.2.7	7.2	L'impiego del separatore idraulico nel caso di impianti con caldaie tradizionali	.285
8.2.8 L	_e co	ondizioni di funzionamento dei generatori di calore ad acqua calda	.286
8.2.9	Со	nsiderazioni condusive	.287
8.31CO	GEN	NERATORI CON MOTORI ENDOTERMICI ALTERNATIVI	.288
8.3.1	Pre	emessa	.288
8.3.2	Pri	ncipali fonti di recupero calore di un cogeneratore	.289
8.3.3	Liv	elli termici di recupero calore di un cogeneratore	.291
834	ء ا	trigenerazione in regime estivo	295

	8.3.4.1	Modalità di accoppiamento fra cogeneratori e gruppi frigoriferi ad assorbimento	296
	8.3.4.2	Utilizzo dei gruppi frigoriferi ad assorbimento come pompe di calore	299
8	3.3.5 Cd	llegamenti idronici degli impianti di cogenerazione e trigenerazione	301
	8.3.5.1	Collegamento dei cogeneratori al circuito di produzione dell'energia termica	302
	8.3.5.2	Collegamento dei gruppi frigoriferi ad assorbimento al circuito acqua calda (lato generatore)	303
	8.3.5.3	Collegamento dei gruppi frigoriferi ad assorbimento al circuito acqua refrigerata (lato evaporatore)	304
	8.3.5.4	Collegamento dei gruppi frigoriferi ad assorbimento a impianti con circuiti secondari acqua refrigerata a	
		Portata costante	304
	8.3.5.5	Collegamento dei gruppi frigoriferi ad assorbimento a impianti con circuiti secondari acqua refrigerata a portata	
		variabile	306
C/	APITOLO	9 - LE PROBLEMATICHE IDRONICHE DEGLI IMPIANTI SOLARI TERMICI	309
9. ′	INTROD	UZIONE	309
9.2	COLLET	TORI SOLARI	309
9	.2.1 Gene	eralità	309
9	.2.2 Reno	dimento di un collettore solare	309
g	.2.3 Colle	ttori solari piani vetrati	311
	9.2.3.1 M	Modificatore dell'angolo di incidenza	313
S	.2.4 Colle	ttori solari sottovuoto	315
S	.2.5 Colle	ttori CPC (Compound Parabolic Concentrator)	317
9.3	3 TIPOLO	GIE D'IMPIANTI SOLARI	321
S	.3.1 Gene	eralità	321
9	.3.2 Impia	anti a circolazione forzata	321
9	.3.3 Impia	anti a circolazione naturale	322
S	.3.4 Impia	anti solari a circolazione naturale e impianti solari a circolazione forzata – Schemi	323
9.4	SISTEM	I DI ACCUMULO	323
ξ	9.4.1 Accu	mulo termico	323
9	9.4.2 Siste	mi di accumulo pressurizzati	326
	9.4.2.1	Materiali impiegati nei serbatoi di accumulo	329
	9.4.2.2	Serbatoi di accumulo per l'acqua calda sanitaria	329
	9.4.2.3 (Caratteristiche costruttive di un serbatoio solare	330
	9.4.2.4	Ncune soluzioni specifiche	332

9.5 SISTEMI DI CONTROLLO	335
9.5.1 Generalità	335
9.5.2 Controllo della temperatura differenziale	
9.6 FASI DI STAGNAZIONE IMPIANTI SOLARI TERMICI	339
9.6.1 Generalità	339
9.6.2 Fase di stagnazione dei collettori	339
9.6.3 Fasi critiche	340
9.6.4 Dinamica di svuotamento dei collettori	341
9.6.5 Sistemi a svotamento o Drainback del circuito primario	344
9.7 REQUISITI IGENICI PER L'ACQUA CALDA SANITARIA	348
9.7.1 Generalità	348
9.7.2 Legionella	348
9.7.2.1 Aspetti generali	
9.7.2.2 Sintomi dell'infezione	
9.7.2.3 Impianti idronici a rischio	
9.7.2.4 Controllo della Legionella	
9.7.2.5 Controllo della Legionella negli impianti solari	351
9.8 PROGETTAZIONE IMPIANTI SOLARI	351
9.8.1 Generalità	351
9.8.2 Configurazione campo solare	
9.8.2.1 Serie e parallelo	
9.8.2.1.1 Collettori in serie a 2 attacchi	352
9.8.2.1.2 Collettori in serie a 4 attacchi	353
9.8.2.1.3 Collettori orizzontali in serie a 2 attacchi	354
9.8.2.2 Influenza della disposizione in schiera dei collettori	355
9.8.3 Componenti d'impianto	
9.8.3.1 Vaso di espansione chiuso	359
9.8.3.1.1 Calcolo secondo la raccomandazione ISPESL	359
9.8.3.1.2 Dimensionamento del vaso di espansione	
9.8.3.1.3 Metodo empirico per il dimensionamento del vaso di espansione	361
9.8.3.1.4 Dimensionamento delle valvole di sicurezza	361
9.8.3.1.5 Dimensionamento delle tubazioni dell'impianto solare termico	362

9.8.3.1.6 Dimensionamento del vaso di drainback	363
9.8.3.1.7 Dimensionamento specifico delle tubazioni	365
9.8.3.1.8 La portata del circuito primario	366
9.8.4 Caricamento impianto e messa in funzione	367
CAPITOLO 10 - LE PROBLEMATICHE IDRONICHE DI REFRIGERATORI D'ACQUA E POMPE DI CALORE	368
10.1 PARAMETRI CHE INFLUENZANO L'EFFICIENZA ENERGETICA DEI GRUPPI FRIGORIFERI	368
10.1.1 Temperatura della sorgente fredda e del ricettore caldo	368
10.1.2 Parzializzazione dei circuiti frigoriferi	369
10.1.3 Contenuto d'acqua dell'impianto	369
10.2 LA REGOLAZIONE DELLE MACCHINE FRIGORIFERE	370
10.2.1 Il bilancio energetico dell'impianto	370
10.2.2 Stadi della regolazione	370
10.2.3 La regolazione dell'ambiente	371
10.2.4 Logiche di regolazione dei gruppi frigoriferi/pompe di calore	371
10.2.4.1 Regolazione della temperatura dell'acqua refrigerata sulla mandata e/o sul ritorno	371
10.2.4.2 La precisione del controllo della temperatura dell'acqua refrigerata prodotta dal gruppo frigorifero	372
10.3 CRITICITÀ DELLE MACCHINE FRIGORIFERE A COMPRESSIONE	374
10.3.1 Variazione di portata d'acqua negli scambiatori	375
10.4 CRITICITÀ DELLE MACCHINE FRIGORIFERE AD ASSORBIMENTO	375
10.5 COME GARANTIRE I TEMPI DI FUNZIONAMENTO DEL COMPRESSORE: INERZIA TERMICA DELL'IMPIANTO	375
10.5.1 Il contenuto d'acqua dell'impianto	376
10.5.2 Esigenze particolari delle pompe di calore ad inversione di ciclo	377
10.5.3 Il contenuto d'acqua dei circuiti di recupero parziale	377
10.5.4 Il contenuto d'acqua dei circuiti di recupero totale	378
10.5.5 Il contenuto d'acqua dei circuiti di condensazione dei gruppi frigoriferi acqua-acqua	378
10.5.6 Il contenuto d'acqua del circuito lato sorgente delle pompe di calore acqua – acqua	378
10.5.7 Il concetto di volume efficace	378
10.5.8 Calcolo del volume del serbatoio di accumulo inerziale	379
10.5.9 Influenza del tempo di risposta della regolazione	379
10.5.10 Strategie di dimensionamento del contenuto d'acqua dell'impianto	380
10.5.10.1 Considerazioni sull'importanza dell'inerzia termica dei circuiti idraulici	380

10.5.10.2	2 Contenuto d'acqua e regolazione dei terminali d'impianto	380
10.5.10.3	3 Contenuto d'acqua e regolazione dei gruppi frigoriferi	381
10.5.10.4	Quali obiettivi porsi e come raggiungerli	381
10.6 COME /	ASSICURARE LA COSTANZA DI PORTATA D'ACQUA	382
10.6.1 Un	ico circuito idraulico (senza disaccoppiamento)	382
10.6.2 Cir	cuito primario disaccoppiato dal circuito secondario	382
10.6.2.1	La formazione di miscela tra circuito primario e circuito secondario	383
10.6.2.2	Cosa si può fare per controllare il fenomeno della miscela	384
10.6.2.3	Cosa non si deve assolutamente fare per controllare il fenomeno della miscela	384
10.6.2.4	Entità del fenomeno della miscela	384
10.6.3 lmp	pianti con circuito secondario a portata variabile	385
10.6.3.1	Circuito di utenza a portata variabile interconnesso a un circuito primario a portata costante: utilizzo di un'unica	
	Pompa	385
10.6.3.2	Vantaggi dei circuiti secondari a portata variabile.	385
10.6.4 Var	iazioni di portata sui gruppi frigoriferi a causa di transitori di regolazione	387
10.6.4.1	Inserimento di una valvola di non ritorno sul disconnettore idraulico (ramo di sfioro)	387
10.6.4.2	Gruppi frigoriferi in parallelo con pompa dedicata	388
10.6.4.3	Gruppi frigoriferi in parallelo con pompe comuni e valvole d'intercettazione	389
10.6.4.4	Gruppi frigoriferi in parallelo inseriti in un circuito primario con pompe a portata costante interconnesso a circuiti sectoria a portata variabile (con o senza pompe)	
10.7 IL POSI	ZIONAMENTO DEI SERBATOI DI ACCUMULO	390
10.7.1 Se	rbatoi inerziali	390
10.7.1.1	Posizionamento sulla tubazione di ritorno	390
10.7.1.2	Posizionamento sulla tubazione di mandata	391
10.7.1.3	Posizionamento sulla linea del disconnettore idraulico (ramo di sfioro)	392
10.7.1.4	Posizionamento come disconnettore idraulico (ramo di sfioro)	392
10.7.2 Se	rbatoi di stoccaggio dell'energia	392
10.7.2.1	Gruppo frigorifero in serie con accumulo di stoccaggio	393
10.7.2.2	Gruppo frigorifero in parallelo con l'accumulo di stoccaggio	396
10.7.2.3	Circuiti idraulici modificabili	397
10.7.2.4	Segnale di fine carica	398
10.7.2.5	Più gruppi frigoriferi a servizio di accumuli di stoccaggio	398
10 7 0 6	Illtoriari canaidaraziani	200

10.8 LA RIDUZIONE DELL'ENERGIA DI POMPAGGIO SUL CIRCUITO PRIMARIO	400
10.8.1 Circuiti primari a portata d'acqua variabile	400
10.8.1.1 Unica pompa per circuito primario e secondario	400
10.8.1.2 Pompe su circuito primario e secondario, entrambe a portata variabile	401
10.8.1.3 Ulteriori criticità: contenuto d'acqua efficace	402
10.8.1.4 Considerazioni energetiche	402
10.8.2 Circuiti primari a salto termico aumentato	402
10.8.2.1 Macchine frigorifere con scambiatori posti idraulicamente in serie	403
10.8.3 Circuiti idronici e macchine frigorifere combinati a doppio livello termico	403
10.9 LOGICHE DI CHIAMATA IN SEQUENZA DI PIU' GRUPPI FRIGORIFERI	404
10.9.1 Logiche di regolazione tradizionali	404
10.9.2 Logiche di sequenza proprietarie	406
10.9.3 La variazione del set-point	406
10.9.4 Strumenti in campo utili alla chiamata in sequenza dei gruppi frigoriferi	407
10.9.4.1 Impianti con primario a portata costante	407
10.9.4.2 Impianti con primario a portata variabile	408
10.9.5 Massimo numero di parzializzazioni possibili	408
10.10 CIRCUITI IDRAULICI PER IL RECUPERO DI CALORE	410
10.10.1 Il recupero di calore parziale	410
10.10.1.1 Circuiti idraulici per il recupero parziale	411
10.10.2 Il recupero di calore totale	411
10.10.2.1 Gruppi frigoriferi polivalenti a recupero totale	412
10.10.2.2 Circuiti idraulici per il recupero totale	415
10.11 CIRCUITI IDRAULICI DEI CONDENSATORI AD ACQUA.	416
10.11.1 Circuiti per torri evaporative a circuito chiuso e dry-cooler	416
10.11.2 Circuiti per torri evaporative a circuito aperto	418
10.11.3 Circuiti per sorgenti termiche alternative (acquedotto, falda, mare, lago, fiume)	420
CAPITOLO 11 - LE PROBLEMATICHE IDRONICHE DEGLI IMPIANTI AD ANELLO D'ACQUA (WLHP)	422
11.1 IL PRINCIPIO DI FUNZIONAMENTO DEL SISTEMA	422
11.2 L'ANELLO D'ACQUA COME SORGENTE TERMICA ESTERNA	423
11.3 LE POMPE DI CALORE ACQUA-ARIA	423

11.3.1 Funzionamento in riscaldamento					
		11.3.3 Il funzionamento di un insieme di unità	426		
11.3.3.1 In riscaldamento	426				
11.3.3.2 In raffreddamento	426				
11.3.3.3 Il funzionamento contrapposto	427				
11.3.3.4 La temperatura dell'acqua dell'anello	429				
11.3.4 La temperatura dell'acqua e l'affidabilità di funzionamento delle pompe di calore	429				
11.3.4.1 La temperatura dell'acqua e l'efficienza delle pompe di calore	431 432 433				
		11.3.5.3 La portata dell'acqua e l'efficienza delle pompe di calore e dell'impianto	433		
		11.3.6 Allacciamento idraulico delle pompe di calore 11.4 IL CIRCUITO IDRAULICO PRINCIPALE (ANELLO) 11.5 IL SISTEMA DI CIRCOLAZIONE 11.6 SISTEMI DI DISSIPAZIONE TERMICA 11.7 SISTEMI DI INTEGRAZIONE TERMICA	435 435 436		
				CAPITOLO 12 - SCHEMI IDRONICI DI PRINCIPIO CENTRALI DI PRODUZIONE ENERGETICA	438
				APPENDICE A CRITERI DI DIMENSIONAMENTO DEI COLLETTORI DI CENTRALE	547
APPENDICE B COEFFICIENTI ξ DELLE PERDITE DI CARICO CONCENTRATE	554				
APPENDICE C RIQUADRI PERDITE DI CARICO DISTRIBUITE E TABELLA TUBAZIONI	602				
ADDENDICE D DOODDIETA' TEDMOCICICUE DELL'ACOLIA	600				

